

US Army Corps of Engineers ®

Mobile District

ALABAMA-COOSA-TALLAPOOSA RIVER BASIN WATER CONTROL MANUAL

APPENDIX G

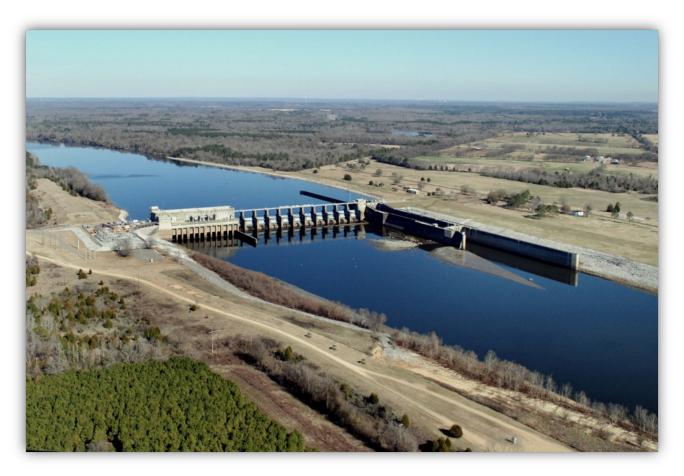
ROBERT F. HENRY LOCK AND DAM AND R. E. "BOB" WOODRUFF LAKE ALABAMA RIVER, ALABAMA

U.S. ARMY CORPS OF ENGINEERS MOBILE DISTRICT MOBILE, ALABAMA

> SEPTEMBER 1974 REVISED MAY 2015 REVISED APRIL 2022

WATER CONTROL MANUAL

APPENDIX G ROBERT F. HENRY LOCK AND DAM AND R. E. "BOB" WOODRUFF LAKE ALABAMA-COOSA-TALLAPOOSA RIVER BASIN



U.S. ARMY CORPS OF ENGINEERS MOBILE DISTRICT/SOUTH ATLANTIC DIVISION MOBILE, ALABAMA

September 1974 Revised May 2015 Revised April 2022

Distribution authorized to U.S. Government agencies only due to the sensitivity of reservoir regulation plan, 5 December 2012. Non-U.S. Government agency requests shall be referred to the U.S. Army Corps of Engineers, Mobile District/South Atlantic Division, Chief of Water Management, P.O. Box 2288, Mobile, Alabama 36628.

FOR OFFICIAL USE ONLY

Robert F. Henry Lock and Dam Alabama River, Alabama

NOTICE TO USERS OF THIS MANUAL

Regulations specify that this Water Control Manual be published in a hard copy binder with loose-leaf form, and only those sections, or parts thereof; requiring changes will be revised and printed. Therefore, this copy should be preserved in good condition so that inserts can be made to keep the manual current. Changes to individual pages must carry the date of revision, which is the South Atlantic Division's approval date.

Regulations specify that this Water Control Manual be published in digital form in the central repository located at the following link:

https://maps.crrel.usace.army.mil/apex/f?p=875

The Water Control Manual at the central repository will be considered the official manual and will be kept current at all times. Instructions and information to upload or document the review status of the Water Control Manual, as per ER 1110-2-240, in the central repository portal can be found under the help tab in the portal.

It is not unexpected that USACE Corporate Information may move the central repository link to a new location. This information will be shared with all offices if a situation occurs by the HQUSACE.

REGULATION ASSISTANCE PROCEDURES

If unusual conditions arise, contact can be made with the Water Management Section, Mobile District Office by phoning (251) 690-2737 during regular duty hours and (251) 509-5368 during non-duty hours. R. F. Henry Project personnel can be reached at (334) 875-4400 or (334) 872-4017.

METRIC CONVERSION

Although values presented in the text are shown in English units only, a conversion table is listed in Exhibit B for your convenience.

U.S. Army Corps of Engineers, Mobile District, South Atlantic Division

April 2022

U.S. Army Corps of Engineers, Mobile District, South Atlantic Division

TABLE OF CONTENTS

		Page
TITLE PAGE		i
PHOTOGRAP	Ή	ii
NOTICE TO U	ISERS OF THIS MANUAL	iii
REGULATION	ASSISTANCE PROCEDURES	iii
METRIC CON	VERSION	iii
TABLE OF CC	DNTENTS	iv
PERTINENT D	DATA	xiii
TEXT OF MAN	NUAL	1-1
Paragraph	Title	Page
1 - INTRODU	CTION	1-1
1-01. Auth	orization for Manual.	1-1
1-02. Purp	oose and Scope.	1-1
1-03. Rela	ted Manuals and Reports.	1-1
1-04. Proje	ect Owner.	1-2
1-05. Ope	rating Agency.	1-2
1-06. Regi	ulating Agency.	1-2
1-07. Verti	ical Datum.	1-2
2 - DESCRIPT	TION OF PROJECT	2-1
2-01. Loca	ation.	2-1
2-02. Purp	oose.	2-1
2-03. Phys	sical Components.	2-2
a. Spillwa	ay.	2-2
b. Reserv	/oir.	2-2
c. Earth [Dikes.	2-2
d. Lock.		2-3
e. Lock C	Control Station.	2-3

f.F	Powerhouse.	2-4
g.	Switchyard.	2-4
2-04.	Related Control Facilities.	2-4
2-05.	Real Estate Acquisition.	2-4
2-06.	Public Facilities.	2-4
3 - GEN	IERAL HISTORY OF PROJECT	3-1
3-01.	Authorization for Project.	3-1
3-02.	Planning and Design.	3-1
3-03.	Construction.	3-2
3-04.	Related Projects.	3-3
3-05.	Dam Safety History/Issues.	3-3
3-06.	Principal Regulation Issues.	3-3
3-07.	Modifications to Regulations.	3-3
4 - WA	TERSHED CHARACTERISTICS	4-1
4-01.	General Characteristics.	4-1
4-02.	Topography.	4-1
4-03.	Geology and Soils.	4-1
4-04.	Sediment.	4-2
4-05.	Climate.	4-2
a.	Temperature.	4-2
b.	Precipitation.	4-3
4-06.	Storms and Floods.	4-4
a.	General.	4-4
b.	Record Floods.	4-4
4-07.	Runoff Characteristics.	4-4
4-08.	Water Quality.	4-4
4-09.	Channel and Floodway Characteristics.	4-5
4-10.	Upstream Structures.	4-5
4-11.	Downstream Structures.	4-6
4-12.	Economic Data.	4-6
a.	Population.	4-6
b.	Agriculture.	4-6
C.	Industry.	4-7
d.	Flood Damages.	4-7
5 - DAT	A COLLECTION AND COMMUNICATION NETWORKS	5-1

5-01.	Hydrometeorologic Stations.	5-1
a. F	Facilities.	5-1
b. F	Reporting.	5-3
c. N	Maintenance.	5-4
5-02.	Water Quality Stations.	5-4
5-03.	Sediment Stations.	5-5
5-04.	Recording Hydrologic Data.	5-6
5-05.	Communication Network.	5-7
5-06.	Communication with Project.	5-8
a. E	Between Regulating Office and Project Office.	5-8
b. E	Between Regulating/Project Office and Others.	5-8
5-07.	Project Reporting Instructions.	5-8
5-08.	Warnings.	5-9
5-09.	Role of Regulating Office.	5-9
5-10.	Role of Power Project Manager.	5-9
6 - HYD	ROLOGIC FORECASTS	6-1
6-01.	General.	6-1
a. F	Role of USACE.	6-1
b. F	Role of Other Agencies.	6-1
6-02.	Flood Condition Forecasts.	6-3
a. F	Requirements.	6-3
b. I	Methods.	6-3
6-03.	Conservation Purpose Forecasts.	6-3
6-04.	Long-Range Forecasts.	6-3
a. F	Requirements.	6-3
b. I	Methods.	6-3
6-05.	Drought Forecast.	6-3
a. F	Requirements.	6-3
b. I	Methods.	6-3
c.F	Reference Documents.	6-4
7 - WAT	ER CONTROL PLAN	7-1
7-01.	General Objectives.	7-1
7-02.	Constraints.	7-1
a. F	Full Discharge Capacity.	7-1
b. I	Head Limitation.	7-1

c. Gate Opening Schedule.	7-1
7-03. Overall Plan for Water Control.	7-1
a. Operation of Spillway Gates.	7-2
7-04. Standing Instructions to Project Operator.	7-2
7-05. Flood Risk Management.	7-2
7-06. Recreation.	7-2
7-07. Water Quality.	7-2
7-08. Fish and Wildlife.	7-3
7-09. Water Conservation/Water Supply.	7-3
7-10. Hydroelectric Power.	7-3
a. Normal Operation.	7-3
b. High-Flow Operation.	7-3
c. Low-Flow Operation.	7-4
7-11. Navigation.	7-4
7-12. Drought Contingency Plan.	7-9
7-13. Flood Emergency Action Plans.	7-12
7-14. Other.	7-12
a. Passing Drift.	7-12
7-15. Deviation from Normal Regulation.	7-12
a. Emergencies.	7-12
b. Declared System Emergency.	7-12
c. Unplanned Deviations.	7-12
d. Planned Deviations.	7-13
7-16. Rate of Release Change.	7-13
8 - EFFECT OF WATER CONTROL PLAN	8-1
8-01. General.	8-1
8-02. Flood Risk Management.	8-1
a. Spillway Design Flood.	8-1
b. Standard Project Flood.	8-1
c. Historic Floods.	8-1
8-03. Recreation.	8-1
8-04. Water Quality.	8-2
8-05. Fish and Wildlife.	8-2
8-06. Water Conservation/Water Supply.	8-2
8-07. Hydroelectric Power.	8-2

8-08	Navigation.	8-3
8-09	Drought Contingency Plans.	8-5
8-10	Flood Emergency Action Plans.	8-5
8-11	Frequencies.	8-6
9 - WA	TER CONTROL MANAGEMENT	9-1
9-01	Responsibilities and Organization.	9-1
a.	USACE.	9-1
b.	Other Federal Agencies.	9-1
C.	State, County and Local Agencies.	9-3
d.	Stakeholders.	9-3
e.	APC.	9-3
9-02	Interagency Coordination.	9-4
a.	Local Press and USACE Bulletins.	9-4
b.	NWS.	9-4
C.	UUSGS.	9-4
d.	SEPA.	9-4
e.	USFWS.	9-5
9-03	Interagency Agreements.	9-5
9-04	Commissions, River Authorities, Compacts, and Committees.	9-5
9-05	Non-Federal Hydropower.	9-5
9-06	Reports.	9-5
9-07	Framework for Water Management Changes.	9-6

TABLE OF CONTENTS (Cont'd)

LIST OF TABLES

Table No.	Table	Page No.
Table 2-1 R. E. "E	Bob" Woodruff Lake Area and Capacity	2-3
Table 2-2 R. E. "E	Bob" Woodruff Lake Public Facilities	2-5
Table 4-1 Normal	I Air Temperature for Selected Sites in/near R. F. Henry Basin	4-3
Table 4-2 Normal	I 30-year Precipitation for Selected Sites in/near R. F. Henry Basin	4-3
Table 4-3 Corps,	APC, and Canton/CCMWA Projects in the ACT	4-5
Table 4-4 Income	e Data per County	4-6
Table 4-5 Agricul	Itural Production and Income per County	4-7
Table 4-6 Manufa	acturing Activity per County	4-7
Table 4-7 Floodin	ng Impacts and Associated R. F. Henry Gage Elevation	4-7
Table 5-1 Rainfal	Il Reporting Network for the Alabama River Basin	5-2
Table 5-2 Reporti	ing Stage Gages Used for Lower Alabama River	5-2
Table 5-3 Sedime	entation Range Results for R. E. "Bob" Woodruff Lake	5-6
Table 6-1 Southe	east River Forecast Center Forecast Locations for Alabama River Ba	sin 6-2
Table 7-1 Monthly	y Navigation Flow Target in cfs	7-6
Table 7-2 Basin li Chanr	Inflow Above APC Projects Required to Meet A 9.0-foot Navigation nel	7-6
Table 7-3 Basin li Chanr	Inflow Above APC Projects Required to Meet A 7.5-foot Navigation nel	7-7
Table 7-4 ACT Ba	asin Drought Intensity Levels	7-10
Table 7-5 ACT Ba	asin Drought Management Matrix	7-11
Table 8-1 Naviga	ation Activity at R. F. Henry Lock and Dam	8-5
Table 9-1 ACT Ba	asin Conservation Storage Percent by Acre-Feet	9-3

TABLE OF CONTENTS (Cont'd)

LIST OF FIGURES

Figure No	. Figure	Page No.
Figure 2-1	R. F. Henry Lock and Dam	2-1
Figure 3-1	Trash Gate at R. F. Henry Dam	3-2
Figure 5-1	Typical Encoder with Wheel Tape for Measuring the River Stage or Lake Elevation in Stilling Well	5-1
Figure 5-2	Typical Field Installation of Precipitation Gage	5-1
Figure 5-3	Typical Configuration of the GOES System	5-4
Figure 7-1	Flow-Depth Pattern (Navigation Template) Using 2004–2010 Survey Data	7-5
Figure 7-2	Flow Requirements from Rainfall (or Natural Sources) and Reservoir Storag to Achieve the JBT Goal for Navigation Flows for a 9.0-foot Channel	je 7-7
Figure 7-3	Flow Requirements from Rainfall (or Natural Sources) and Reservoir Storag to Achieve the JBT Goal for Navigation Flows for a 7.5-foot Channel	je 7-8
Figure 8-1	Alabama River Channel Availability below Claiborne, 1970 to 2010	8-4

LIST OF EXHIBITS

Exhibit No	o. Exhibit	Page No.
А	Supplementary Pertinent Data	E-A-1
В	Unit Conversions and Vertical Datum Conversion Information	E-B-1
С	Standing Instructions to the Damtenders for Water Control	E-C-1
D	Alabama-Coosa-Tallapoosa (ACT) River Basin, Drought Contingency Plan	E-D-1

TABLE OF CONTENTS (Cont'd)

LIST OF PLATES

Plate No.	Title
2-1	Basin Map
2-2	Plan and Sections
2-3	Spillway Elevation and Sections
2-4	Area-Capacity Curve
2-5	Reservoir Real Estate Acquisition and Public Use Areas, Sheet 1 of 2
2-6	Reservoir Real Estate Acquisition and Public Use Areas, Sheet 2 of 2
2-7	Real Estate Acquisition and Public Use Areas
4-1	Sedimentation Ranges
4-2	Basin Temperature Averages and Extremes
4-3	ACT Reporting Gages
4-4	ACT Basin Precipitation Extremes
4-5	Average Daily Discharge Hydrographs, 1939 through 2009
4-6	Average Daily Discharge Hydrographs
4-7	Average Daily Discharge Hydrographs
4-8	Average Daily Discharge Hydrographs
4-9	Average Daily Discharge Hydrographs
4-10	Average Daily Discharge Hydrographs
4-11	Average Daily Discharge Hydrographs
4-12	Average Daily Discharge Hydrographs
4-13	Monthly and Daily Flow Data
4-14	Monthly and Daily Flow Data
4-15	Monthly and Daily Flow Data
5-1	Precipitation and River Gage Map
5-2	Lower Alabama River Reporting River and Stream Gages
7-1	Spillway, Lock, and Overbank Dikes Flow Rating Curve
7-2	Tailwater Rating Curve
7-3	Flow vs Power Output Single Turbogenerator Unit
7-4	Spillway Gate Operation Schedule
7-5	Spillway Gate Operation Schedule

- 7-6 Spillway Gate Operation Schedule
- 7-7 Spillway Gate Operation Schedule
- 7-8 Spillway Gate Operation Schedule
- 7-9 Spillway Gate Operation Schedule
- 7-10 Spillway Gate Operation Schedule
- 7-11 Spillway Gate Operation Schedule
- 7-12 Trash Gate Flow Rating Curve
- 8-1 Inflow-Outflow-Pool Hydrographs for Spillway Design Flood
- 8-2 Inflow-Outflow-Pool Hydrographs for Standard Project Flood
- 8-3 Inflow-Outflow-Pool Hydrographs for Flood of March 1990
- 8-4 Inflow-Outflow-Pool Hydrographs for Flood of February–March 1961
- 8-5 Annual Peak Flow Frequency 1886–2009
- 8-6 Headwater-Tailwater Annual Stage Frequency Curves

PERTINENT DATA

(see Exhibit A, page E-A-1 for Supplementary Pertinent Data)

<u>GENERAL</u>

Location – Autauga, Lowndes, Montgomery, and Elmore Counties, AL; Alabama River, river mile 236.3		
Dam site. Miles above mouth of Alabama River	236.30	
Total drainage area above dam site – square mile (sq. mi.)	16,233	
RESERVOIR		
Length at elevation 126.0 feet NGVD29 – miles	81.1	
Maximum operating pool elevation – feet National Geodetic Vertical Datum (NGVD) 29	126	
Area at pool elevation 126.0 – acres	13,500	
Total conservation volume between elevation 126.0 – 123.0 feet NGVD29 - acre-feet	36,450	

GATED SPILLWAY

Total length, including end piers – feet	646
Number of piers, including end piers	12
Elevation of crest – NGVD29	91.0
Type and number of gates	Tainter – 11 gates
Size of gates – feet	50x35
Elevation of top of gates in closed position – NGVD29	126.0

EARTH OVERFLOW DIKES

Right Bank Dike	
Total length – feet	2,661
Top elevation – NGVD29	135.0
Top width – feet	32
Side slopes	1v on 8h
Left Bank Dike	
Total length including lock mound – feet	12,639
Top elevation – NGVD29	143.0
Top width – feet	32
Side slopes	1v on 2.5h

<u>LOCK</u>

Maximum lift – feet	47.0
Chamber size, length by width – feet	600 x 84
POWER PLANT	
Number of Units	4
Generator rating, 4 units @ 20,500 each – kilowatt (kW)	82,000
Plant output at rated net head	
Installed capacity at rated power factor – kW	82,000
Maximum Static Head (feet)	47

1 - INTRODUCTION

1-01. Authorization for Manual. Section 7 of the Flood Control Act of 1944 instructed the Secretary of the Army to prescribe regulations for the use of storage allocated for flood control (now termed flood risk management) or navigation at all U.S. Army Corps of Engineers (herein referred to as USACE or Corps) reservoirs. Therefore, this water control manual has been prepared as directed in the Corps' Water Management Regulations, specifically Engineering Regulation (ER) 1110-2-240, Water Control Management (date enacted 30 May 2016). That regulation prescribes the policies and procedures to be followed in carrying out water management activities, including establishment and updating of water control plans for Corps and non-Corps projects, as required by Federal laws and directives. This manual is also prepared in accordance with pertinent sections of the Corps' Engineering Manual (EM) 1110-2-3600, Management of Water Control Systems (date enacted 10 October 2017); under the format and recommendations described in ER 1110-2-8156, Preparation of Water Control Manuals (date enacted 30 September 2018); and ER 1110-2-1941, Drought Contingency Plans (date enacted 02 February 2018). Revisions to this manual are to be processed in accordance with ER 1110-2-240.

1-02. Purpose and Scope. The primary purpose of this manual is to document the water control plan for the Robert F. (R. F.) Henry Lock and Dam Project. Details of the coordinated reservoir regulation plan for R. F. Henry Lock and Dam within the multiple project system of the Alabama River are presented which ensure optimum benefits consistent with the physical characteristics and purposes for which the system was authorized. Included are descriptions of physical components of the lock and dam, operating procedures, historical facts, and other pertinent data. Also presented are general characteristics of the area including flood frequencies, meteorology, and a discussion on river forecasting. In conjunction with the ACT Basin master water control manual, this manual provides a general reference source for R. F. Henry water control regulation. It is intended for use in day-to-day, real-time water management decision making and for training new personnel.

1-03. Related Manuals and Reports. The Alabama-Coosa-Tallapoosa River Basin Water Control Manual, of which this is Appendix G, contains general information for the entire basin. Appendices to the basin master water control manual are prepared for all reservoir projects within the basin when one or more project functions are the responsibility of the Corps. Other manuals published for use by project personnel include R. F. Henry Lock and Dam Operation and Maintenance Manual, and CESAM Plan 500-1-4, Emergency Notification Procedures. A list of all the appendices for the Alabama-Coosa-Tallapoosa (ACT) Basin and the master water control manual are listed below.

Alabama-Coosa-Tallapoosa River Basin Master Water Control Manual

Appendix A - Allatoona Dam and Lake

Appendix B - Weiss Dam and Lake (Alabama Power Company)

Appendix C - Logan Martin Dam and Lake (Alabama Power Company)

Appendix D - H. Neely Henry Dam and Lake (Alabama Power Company)

Appendix E - Millers Ferry Lock and Dam and William "Bill" Dannelly Lake

Appendix F - Claiborne Lock and Dam and Lake

Appendix G - Robert F. Henry Lock and Dam and R. E. "Bob" Woodruff Lake

Appendix H - Carters Dam and Lake and Carters Reregulation Dam

Appendix I - Harris Dam and Lake (Alabama Power Company)

Other pertinent information regarding the ACT River Basin development is in operation and maintenance manuals and emergency action plans for each project. Historical, definite project reports and design memoranda also have useful information.

1-04. Project Owner. The R. F. Henry Lock and Dam Project is a federally owned project entrusted to the Corps, South Atlantic Division (SAD), Mobile District.

1-05. Operating Agency. The Corps' Mobile District operates the R. F. Henry Lock and Dam Project. Reservoir operation and maintenance are under the supervision of Operations Division. The project falls under the direction of the Operations Project Manager located at Tuscaloosa, Alabama. Maintenance staff duty hours at the R. F. Henry Powerhouse, known primarily as the Jones Bluff Powerhouse, are Monday-Thursday from 6:00 a.m. to 4:30 p.m. The phone number is (334) 875-4400 during duty hours. The powerhouse can be operated at the R. F. Henry site or via remote control from the Millers Ferry Lock and Dam Project. The Millers Ferry Powerhouse can be called at (334) 682-9124. The lock is tended seasonally from 6:00 a.m. to 4:00 p.m. on Friday through Monday during March-September and from Monday through Thursday during October-February by operators under the direct supervision of a lock supervisor. The lock is closed on all Federal holidays. All commercial traffic must schedule an appointment for lockage. The lock will be made available 24 hours per day, seven days per week for appointments by commercial traffic. Non-commercial traffic may be accommodated during the hours the lock is manned, subject to the availability of lock operators and in conjunction with maintenance activities and as those activities allow. The office phone number of the lock is (334) 872-9525.

1-06. Regulating Agency. Authority for the water control regulation of the R. F. Henry Project has been delegated to the SAD Commander. Water control regulation activities are the responsibility of the Mobile District, Engineering Division, Water Management Section. Water control actions for the R. F. Henry Project are regulated in a system-wide, balanced approach to meet the federally authorized purposes. It is the responsibility of the Water Management Section to develop water control regulation procedures for the ACT Basin Federal projects. The regulating instructions presented in the basin water control plan are issued by the Water Management Section with approval of SAD. The Water Management Section monitors the project for compliance with the approved water control plan and makes water control regulation decisions on the basis of that plan. When necessary, the Water Management Section instructs the project personnel regarding normal procedures and emergencies for unusual circumstances.

1-07. Vertical Datum. All vertical data presented in this manual are referenced to the project's historical vertical datum, National Geodetic Vertical Datum of 1929 (NGVD29). It is the Corps' policy that the designed, constructed, and maintained elevation grades of projects be reliably and accurately referenced to a consistent nationwide framework, or vertical datum - i.e., the National Spatial Reference System (NSRS) or the National Water Level Observation Network (NWLON) maintained by the U.S. Department of Commerce, National Oceanic and Atmospheric Administration (NOAA). The current orthometric vertical reference datum within the NSRS in the continental United States is the North American Vertical Datum of 1988 (NAVD88). The current NWLON National Tidal Datum Epoch is 1983–2001. The relationships among existing, constructed, or maintained project grades that are referenced to local or

superseded datums (e.g., NGVD29, mean sea level [MSL]), the current NSRS, and/or hydraulic/tidal datums, have been established per the requirements of ER 1110-2-8160 and in accordance with the standards and procedures as outlined in EM 1110-2-6056. A Primary Project Control Point has been established at this project and linked to the NSRS. Information on the Primary Project Control Point, designated BM1, and the relationship between current and legacy datums are in Exhibit B.

Intentionally left blank.

2 - DESCRIPTION OF PROJECT

2-01. Location. The R. F. Henry Lock and Dam Project is located in the south central part of the State of Alabama on the Alabama River at a point 236.3 miles above its mouth. It is approximately 15 miles east-southeast of Selma and 35 miles west of Montgomery, Alabama. The dam and the first 32.9 miles of the R. E. "Bob" Woodruff Lake are in Autauga County, which is along the right side of the river, and Lowndes County, which is along the left side of the river. For the next 9.7 miles the right side of the lake is still in Autauga County, but the left side is in Montgomery County. The remainder of the lake is in Elmore County on the right and Montgomery County on the left side. The project is shown on Plate 2-1 and in Figure 2-1.

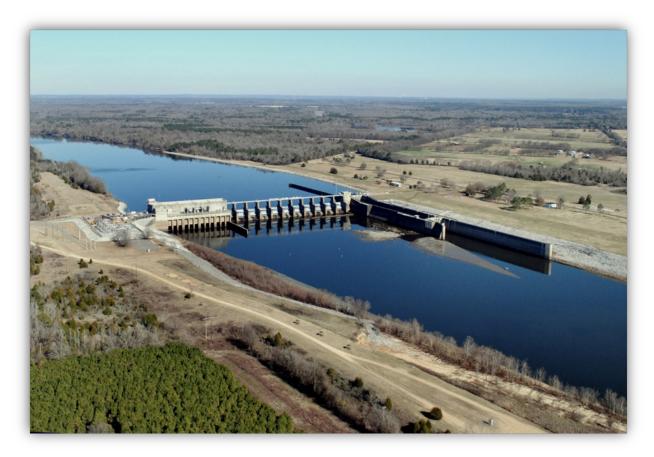


Figure 2-1 R. F. Henry Lock and Dam

2-02. Purpose. R. F. Henry Lock and Dam is a multiple purpose project. The River and Harbor Act of 1945, Public Law (P. L.) 79-14, authorized flood risk management, navigation, and hydropower. The operating purposes include navigation and hydropower. The minimum pool elevation of 123.0 feet NGVD29 provides for navigation to Wetumpka, Alabama 80 miles upstream. There is no flood risk management storage in this project; flood risk management was deleted from the project plan prior to construction. Several other project purposes have been added through general authorizations including water quality, recreation, and fish and wildlife conservation. Access and facilities are provided for recreation, but water is not normally controlled for that purpose.

2-03. Physical Components. The R. F. Henry Project consists of a gravity-type dam with gated spillway supplemented by earth dikes, a navigation lock and control station, and an 82,000 kilowatt (kW) power plant. At full pool elevation, 126.0 feet NGVD29, the reservoir formed by the dam extends upstream a maximum distance of approximately 81.1 miles to Wetumpka on the Coosa River. Principal features of the project are described in detail in subsequent paragraphs. Sections, plan, and elevations of the dam and other features are shown on Plates 2-2 and 2-3.

<u>a. Spillway.</u> The spillway is a concrete-gravity structure equipped with 11 tainter gates 50 feet long and 35 feet high. The gate adjacent to the powerhouse is equipped with a trash gate that accommodates the passing of trash accumulations at the powerhouse and spillway. The spillway crest is at elevation 91.0 feet NGVD29. The top of gates in the closed position is elevation 126.0 feet NGVD29. The overall spillway length is 646 feet. The net length is 550 feet. The gates are mounted between 8-foot wide piers and are operated by individual hydraulically operated ratchet gear hoists that are located on top of the piers. A bridge for pedestrian traffic spans the top of the piers. The spillway joins the lock abutment on the left side and the powerhouse on the right side. The spillway stilling basin is a horizontal concrete apron with a 5-foot high sloping end sill. The basin extends downstream a maximum distance of 100 feet from the spillway gate seal, and the apron is stepped in a transverse direction from elevation 73.0 feet NGVD29 down to elevation 63.0 feet NGVD29.

<u>b.</u> Reservoir. The R. F. Henry Dam creates the R. E. "Bob" Woodruff Lake, which covers an area of 13,500 acres at pool elevation 126.0 feet NGVD29. The impounded water at pool elevation 126.0 feet NGVD29 has a total volume of 247,210 acre-feet. The maximum length of the reservoir at elevation 126.0 feet NGVD29 is 81.1 miles, which consists of 69.0 miles up the Alabama River to its head at the confluence of the Coosa and Tallapoosa Rivers, then up the Coosa River 12.1 miles to Wetumpka. The lake at elevation 126.0 feet NGVD29 also extends to the tailrace of the Alabama Power Company's (APC) Walter Bouldin Dam that is located in a canal which runs from Jordan Lake to the Coosa River. Area and capacity curves are shown on Plate 2-4, and selected area and capacity values are tabulated on Table 2-1.

c. Earth Dikes. The earth dike on the right overbank is 2,661 feet long and connects the powerhouse with high ground to the northwest. A roadway along the dike provides access to the powerhouse. The top of the dike is at elevation 135.0 feet NGVD29 except the portion which slopes upward to the level of the switchyard at elevation 143.0 feet NGVD29. Floods of sufficient magnitude to overtop the dike have a recurrence frequency of once in nine years. Both the upstream and downstream slopes of the dike are protected with grouted riprap against high velocities that occur during overtopping. The dike on the left overbank is a non-overflow section with a top elevation of 143.0 feet NGVD29 and has an access road along its entire length. Considering the distance across the lock esplanade and an adjacent disposal area as part of the dike the total length is 12,639 feet. The top elevation of 143.0 feet NGVD29 is slightly above the computed headwater elevation of the standard project flood series. No riprap is provided on the slopes of this dike since the base is above the maximum pool level, elevation 126.0 feet NGVD29.

POOL ELEV. (FEET NGVD29)	TOTAL AREA (ACRES)	TOTAL STORAGE (ACRE-FEET)	POOL ELEV. (FEET NGVD29)	TOTAL AREA (ACRES)	TOTAL STORAGE (ACRE-FEET)			
64	0	0	122²	10,470	200,030			
65	10	10	123 ³	10,990	210,760			
70	80	200	124	11,700	222,100			
75	240	970	125 ⁷	12,510	234,210			
80	600	2,970	126 ^{4,5}	13,500	247,210			
85	1,280	7,550	127	14,580	261,250			
90	2,150	16,140	128	15,640	276,360			
¹ 91	2,320	18,370	129	16,650	292,510			
95	2,970	28,590	130	17,730	309,700			
100	3,900	46,040	131	19,150	328,140			
105	5,260	68,880	132	20,550	347,990			
110	6,660	98,740	133	22,300	369,410			
115	8,110	135,700	134	24,050	392,590			
116	8,400	143,950	135 ⁶	26,380	417,800			
117	8,690	152,500	136	28,800	445,390			
118	9,000	161,340	137	31,500	475,470			
119	9,310	170,500	138	33,700	507,990			
120	9,630	179,970	139	36,000	542,840			
121	10,010	189,790	140	38,400	580,040			

Table 2-1 R. E. "Bob" Woodruff Lake Area and Capacity

¹ Spillway crest

² Emergency drawdown elevation

³ Minimum operating pool elevation

⁴ Maximum full pool operating elevation

⁵ Top-of-gates - closed position

⁶ Crest of free overflow dike

⁷ Normal operating pool elevation

<u>d. Lock.</u> The lock is located in the left bank between the spillway and the left overbank earth dike. The lock chamber is 84 feet wide and is 655 feet long between gate pintles. The usable length is slightly over 600 feet. The top of the upper gate blocks and the top of the upstream miter gate are at elevation 143.0 feet NGVD29. The top of all other walls and the downstream miter gate are at elevation 132.0 feet NGVD29. The top of the upper miter sill is at elevation 109.0 feet NGVD29, 17 feet below the full upper pool elevation 126.0 feet NGVD29. The top of the lower miter sill is at elevation 67.0 feet NGVD29, 13.8 feet below the Millers Ferry full pool elevation 80.8 feet NGVD29. The lock filling and emptying system consists of two intake ports in the riverside face of the upper gate block, a longitudinal culvert in each of the chamber walls, a system of floor culvert in the chamber, and a discharge system that empties outside the lower approach. Reverse-tainter valves control flow in the culverts. The volume of water discharged in acre-feet for each time the lock is emptied can be determined by multiplying the gross head by 1.264.

<u>e. Lock Control Station.</u> The control station is located between the spillway and lock adjacent to the upper gate block of the lock. The building is of reinforced concrete construction three stories high. It contains an office and the mechanical and electrical equipment necessary for operation of the lock and spillway. The third floor provides access to the spillway bridge.

<u>f. Powerhouse.</u> The powerhouse at the R. F. Henry Dam retained its original name as the Jones Bluff Powerhouse. It is situated in the right bank of the river adjoining the switchyard and parking area mound to the west. It joins the end of the spillway section to the east or river-side. The building is a reinforced concrete structure, 375 feet long and 160 feet wide. It consists of four generation bays and one erection bay. The generation bays each contain a fixed-blade propeller-type turbine rated at 23,480 horsepower at a head of 28.2 feet. The turbine is connected to a vertical-shaft generator rated at 20,500 kW. The intake is an integral part of the powerhouse structure and is positioned on the axis of the spillway.

<u>g. Switchyard.</u> The switchyard is located on the west side of the powerhouse which is the right bank of the river. It is joined on the west by the right overbank dike. The top elevation of the switchyard mound is 143.0 feet NGVD29. The principal structure in the switchyard is the main takeoff for the outgoing lines. There are other structures for busses, disconnecting switches, and potential transformers.

2-04. Related Control Facilities. The Jones Bluff Powerhouse can be operated remotely from the Millers Ferry Powerhouse and the Millers Ferry Powerhouse from Jones Bluff.

2-05. Real Estate Acquisition. Land acquisition authorization for the R. F. Henry Project was enacted under the River and Harbor Act of 2 March 1945, P. L. 79-14. The acreage acquired for all project purposes totals 19,318.980 acres. Of that total acreage, 5,407.200 acres were acquired in fee and 13,911.780 acres were acquired by perpetual easement.

The acquisition guidelines for flowage easements were based upon backwater computations with the acquisition limits being established at the elevation where the backwater effect with the dam in place is less than one foot. The profiles were developed using flows from 75,000 cubic feet per second (cfs) to 125,400 cfs. The highest flows were for a natural recurrence frequency of once every 1.5 years. The acquisition guideline thus adopted begins at elevation 127.0 feet NGVD29 at the dam, mile 236.3, and continues at that elevation to mile 242.4; then on a uniform slope to elevation 130.5 feet NGVD29 at mile 254.9; then to elevation 131.0 feet NGVD29 at mile 261.9; and then to elevation 139.5 feet NGVD29 at mile 305.3, at the junction of the Coosa and Tallapoosa Rivers. There are 12 Real Estate Segment Maps traversing Autauga, Elmore, Lowndes, and Montgomery Counties, which depict the 527 tracts acquired and the final acquisition limits based on the aforementioned elevations. An overview of the real estate acquisition areas is shown on Plates 2-5 and 2-6.

2-06. Public Facilities. R. E. "Bob" Woodruff Lake, impounded by R. F. Henry Lock and Dam, greatly enhances the opportunities for water-oriented recreation. The lake offers such activities as fishing, boating, water skiing, picnicking, camping, swimming, and hiking. The project features 17 primary recreation facilities that are rustic but well facilitated for visitors. Fifteen of the sites are operated by the Corps and have approximately 3,978 total acres. The Fort Toulouse National Historic Park is operated and maintained by the State of Alabama and has approximately 183 total acres. Powder Magazine is operated by the City of Montgomery and has approximately 58 total acres. Conveniences at the parks include beaches, campgrounds, picnic areas, trails, and boat launching ramps. Since the first park was constructed in 1975, annual attendance has risen to over two million. Public facilities at Woodruff Lake are listed in Table 2-2 and shown on Plate 2-7. The phone number for the Operations Project Managers Office for the Alabama River Lakes, at the R. F. Henry site is (334) 872-8210.

	Boat Launch	Marina	Camping	Playground	Picnic	Swimming Beach	Trails
Benton	0				0		
Cooters Pond	0						
Damsite East Bank							
Damsite West Bank							
Ft. Toulouse	0		0		0		
Gunter Hill Campground	0		0	ο	0		0
Holy Ground Battlefield Park	0				0	ο	0
Montgomery Marina		o					
Powder Magazine	0	o					
Prairie Creek	0		0	o	0		0
Swift Creek	0						

 Table 2-2 R. E. "Bob" Woodruff Lake Public Facilities

Intentionally left blank.

3 - GENERAL HISTORY OF PROJECT

3-01. Authorization for Project. The original project for the improvement of the Alabama River was authorized by Congress on 18 June 1878 to provide for a navigation channel four feet deep and 200 feet wide from the mouth to Wetumpka and was modified on 13 July 1892 to provide a 6-foot channel. Subsequent acts approved in 1905 and 1910 provided for a channel 4 feet deep at low water from the mouth to Wetumpka by the use of contracting dikes and dredging. This project was 62 percent complete in 1942, the last year that any new work was performed. The 9-foot navigation channel was authorized by the River and Harbor Act of March 2, 1945 (P. L. 79-14). The authorization refers to House Document 77-414. The House Document recommended the authorization of a general plan for the basin "...in accordance with plans being prepared by the Chief of Engineers." The basin plan at that time contemplated a 9-foot-deep navigable channel from the mouth of the Alabama River to Rome, Georgia, to be achieved by open river works and locks and dams.

3-02. Planning and Design. The first comprehensive report on the optimum use of the water resources of the basin was prepared by the Corps in 1934, and was printed as House Document No. 66, 74th Congress, 1st session (308 Report). The plan contemplated five navigation dams on the Alabama River.

A resolution of the Committee on Rivers and Harbors, House of Representatives, passed on 28 April 1936, requested that a review be made to determine if changes in economic conditions might warrant modification of the recommendations in House Document No. 66, 74th Congress, with regard to the Alabama River. A resolution of the Committee on Commerce, U. S. Senate, adopted 18 January 1939, requested a review to determine the advisability of constructing reservoirs on the Alabama-Coosa Rivers and tributaries for development of hydroelectric power and improvement for navigation.

The Chief of Engineers, in a report submitted on 15 October 1941 and printed as House Document No. 414, 77th Congress, 1st Session, recommended a general plan for the development of the basin. Congress authorized in the River and Harbor Act of 2 March 1945 (P. L. 14, 79th Congress) the initial and partial accomplishment of this plan. Planning studies for the initially authorized projects on the Alabama River to provide navigation facilities with the maximum hydroelectric power feasible began in 1945.

A site selection report for the entire Alabama River was submitted on 10 December 1945, which determined that the overall project for the Alabama River should consist of dredging in the lower river, and navigation dams and locks at Claiborne, Millers Ferry, and Jones Bluff upstream with power plants added to the latter two projects. The first design memorandum for Jones Bluff presenting "Basic Hydrology" was submitted on 30 April 1963. It was followed by the "General Design" on 16 March 1964 and then by 19 design memoranda for particular features of the project during the next eight years.

3-03. Construction. The first phase of construction placed under contract at the R. F. Henry Project was the lock excavation, which commenced on 7 February 1966, and was completed on 1 October 1966. No other work was contracted because of delays in funding until 1968. The Dravo Corporation was awarded a contract for construction of the lock, nine gate-bays of the spillway, the earth overbank dikes, the access roads, and the lock mound on 17 April 1968. The work under that contract was completed 15 October 1971 at a total cost of \$16,417,377.38.

The second-stage cofferdam was completed in October 1970, which closed the river channel. The reservoir was not filled at the time because of reservoir clearing operations under way in the lower reaches. The river flow was passed through the gate bays in the completed portion of the spillway. In November 1971 filling was begun in conjunction with clearing operations in the upper reaches of the reservoir. When clearing was completed in December 1971 the reservoir was filled to pool elevation 125.0 feet NGVD29. The first navigation through the lock was allowed in January 1972 and the facility was officially opened to navigation on 15 April 1972.

A contract for construction of the powerhouse and the last two gate bays of the spillway was awarded on 23 June 1972 to Peter Kiewlt and Sons along with Standard Construction Company as a joint venture. The power units were placed in operation in 1975 at approximately three-month intervals for each unit.

Spillway Gate No. 1 was modified in 1990 to include a trash gate which accommodates the passing of trash accumulations at the powerhouse and spillway. As shown in Figure 3-1, hydraulic arms are used to slide the upper portion of the spillway gate down which allows trash and water to spill over the top of the gate.

Figure 3-1 Trash Gate at R. F. Henry Dam

3-04. Related Projects. The R. F. Henry Lock and Dam Project is the third major unit of the navigation system developed on the Alabama River by the Corps. Millers Ferry Lock and Dam, located downstream at river mile 133.0, also has hydropower capability. Claiborne Lock and Dam is located downstream of Millers Ferry at river mile 72.5.

3-05. Dam Safety History/Issues. R. F. Henry Dam is classified as having a significant hazard potential based upon the inspection conducted 11 January 2017. A significant dam hazard potential classification is assigned where failure or mis-operation of the dam would result in no probable loss of human life, but can cause economic loss, environmental damage, disruption of lifeline facilities, or can impact other concerns. R. F. Henry Dam was assessed as low dam safety risk based on an 11 May 2009 risk assessment (<u>https://nid.usace.army.mil</u>). Project dam safety risk is assessed every 10 years.

R. F. Henry Dam is regularly monitored and inspected to track project conditions and ensure there have been no significant changes.

The Emergency Action Plan (EAP) for R. F. Henry Dam was updated 7 September 2019.

3-06. Principal Regulation Issues. There have been no significant regulation problems, such as erosion, boils, severe leakage, etc., at the R. F. Henry Project.

3-07. Modifications to Regulations. P. L. 94-538 [S.2533]; October 18, 1976, designated "the lake formed by the lock and dam referred to as the 'Jones Bluff lock and dam' on the Alabama River, Alabama, as 'R. E. "Bob" Woodruff Lake'."

P. L. 97-383 [S. 2034]; December 22, 1982, renamed the Jones Bluff Lock and Dam to the "Robert F. Henry Lock and Dam." The original name of the powerhouse, "Jones Bluff Powerhouse," was retained. Intentionally left blank.

4 - WATERSHED CHARACTERISTICS

4-01. General Characteristics. The Alabama-Coosa-Tallapoosa River System drains a small portion of Tennessee, northwestern Georgia, and northeastern and east-central Alabama. The Alabama River Basin has its source in the Blue Ridge Mountains of northwest Georgia. The main headwater tributaries are the Oostanaula and Etowah Rivers, which join near Rome, Georgia, to form the Coosa River. The Coosa River in turn joins the Tallapoosa River near Wetumpka, Alabama, approximately 14 miles above Montgomery, Alabama, to form the Alabama River. Plate 2-1 shows a map of the ACT River Basin.

4-02. Topography. The ACT River Basin is composed of an unusually wide range of topographic areas. The location of the river basin is within parts of five physiographic provinces: the Blue Ridge Province, Valley and Ridge Province, Piedmont Plateau, Cumberland Plateau, and Coastal Plain. Each of these physiographic sub-divisions influences drainage patterns. High rounded mountains and steep narrow valleys characterize the northeastern portion of the basin in the Blue Ridge Province. Overburden is sparse except in the valley flood plains. The topography of the Valley and Ridge Province is alternating valleys and ridges with altitudes varying from approximately 600 to 1,600 feet. The dominant characteristics of the Cumberland Plateau are flat plateaus ranging in altitude from 1,500 to 1,800 feet that bound narrow, northeast-southwest trending valleys. Rolling hills and occasional low mountains topographically characterize the Piedmont Province. Altitudes range from 500 to 1.500 feet. Low hills with gentle slopes and broad shallow valleys that contain slow-moving meandering streams with wide floodplains characterize the topography of the Coastal Plain. The Alabama River flows through a broad lowland valley that varies in width from three to 10 miles throughout the length of the R. F. Henry Lock and Dam Project. To the south the river borders the Black Belt, a prairie land so named for its rich, black soil and flat to gently rolling prairie land developed over the Selma Chalk Formation. The northern side of the river is bounded by stable formations that are more resistant to erosion. Exposed hillsides with a greater relief are characteristic of this northern side. The river strikes a broad, meandering, westerly course through the valley falling at a rate of 0.5-foot per mile. Normal river elevation is below the floodplain. There are numerous tributaries entering the river from both sides and are rather evenly distributed between the upper and lower limits of the lake.

4-03. Geology and Soils. The ACT River Basin covers an unusually wide range of geologic conditions. The location of the river basin is within parts of five physiographic provinces: the Blue Ridge Province, Valley and Ridge Province, Piedmont Plateau, Cumberland Plateau, and Coastal Plain. Each of these physiographic sub-divisions influences drainage patterns. Rugged crystalline rocks characterize the northeastern portion of the basin in the Blue Ridge Province. Folded limestone, shale, and sandstone compose the Valley and Ridge Province. The axes of the folds that trend northeast-southwest influence the course of the streams in that they tend to flow southwestward along the alignment of the geologic structure. Like the Valley and Ridge Province, folded, faulted, and thrusted rocks form the Cumberland Plateau, with the deformation being less than the Valley and Ridge rocks. The east-central portions of the basin are in the Piedmont Province, characterized by sequences of metamorphic and igneous rocks. Prominent topographic features generally reflect the erosional and weathering resistance of quartzite, amphibolite, and plutonic rocks. The residual soils are predominately red sandy clays and gray silty sand derived from the weathering of the underlying crystalline rocks. The more recent sedimentary formations of the Coastal Plain underlie the entire southern portion of both river basins. The contact between the Coastal Plain on the south and the previously described

physiographic provinces to the north is along a line that crosses the Cahaba River near Centreville, Alabama; the Coosa River near Wetumpka, Alabama; and the Tallapoosa River near Tallassee, Alabama. As the rivers leave the hard rocks above this line and enter the softer formations of the Coastal Plain, the erosion properties change, resulting in the formation of rapids. This line is a geological divide commonly known as the "fall line". The rocks of the Coastal Plain are typically poorly consolidated marine sediments.

Overlying the bedrock at the R. F. Henry Lock and Dam site are layers of fine and coarse grained soils that average 30 feet in thickness. The fine-grained soils consist of silty clay, silty sand, and fat clay. The clays were deposited in depressions and range in thickness up to 25 feet. Below the fine grained soils is a layer of poorly graded sand and poorly graded gravel that averages 20 feet in thickness. Underlying the sand and gravel is a soft, residual layer of clay overlying bedrock that generally slopes towards the river channel.

Two geologic formations exist at the project. The Selma Chalk Formation comprises the upper rock section and ranges in thickness from 100 to 135 feet. The Selma Chalk Formation is composed of gray, calcareous chalk, siltstone, and claystone with thin layers of green clay. The Eutaw Sand Formation underlies the Selma Formation and ranges in thickness up to 400 feet. The sand is fine to medium grained, green to gray, micaceous, and fossiliferous. The Eutaw Formation contains groundwater under artesian pressure.

The geologic structure at the project is a monocline dipping about 35 feet per mile in a southwesterly direction. The Selma Chalk Formation thickens in the downstream direction and includes about 1000 feet of calcareous rocks at full thickness.

4-04. Sediment. Sedimentation ranges were established for the entire reservoir length and the original surveys were made in 1974. The ranges were resurveyed in 1982, 1988, and again in 2009. Key ranges are resurveyed at regular intervals for any appreciable changes in channel geometry. The latest survey was in 2009 and is retained in the Hydraulic Data and Sedimentation Unit at the Mobile District Office. Sedimentation range locations are shown on Plates 4-1.

Based on the 2009 survey data, the R. E. "Bob" Woodruff Lake has heavy deposition and acute right bank erosion on the Tallapoosa River arm at range 16A and slight to moderate erosion on the Coosa River arm at range 17A. The Alabama River ranges appear relatively stable. Shoreline conditions are fairly uniform along the length of the lake with about two-thirds of the shorelines experiencing erosion and the remaining one-third being depositional.

4-05. Climate.

a. Temperature. The ACT Basin area has long, warm summers, and relatively short, mild winters. The mean annual temperature is 66.2 degrees Fahrenheit (°F) with a mean monthly range from 48.7 °F in January to 82.4 °F in July and August. Extreme temperatures recorded in the ACT mid-basin at Montgomery, Alabama range from a low of -5 °F in January 1899 to a high of 106 °F in August 2007 and September 1925. The frost-free season varies from about 200 days in the northern valleys to about 260 days in the southern part of the basin. The maximum, minimum, and mean monthly and annual normal temperatures for locations in or near the R. F. Henry watershed are shown on Table 4-1. Climatologists define a climatic normal as the arithmetic average of a climate element, such as temperature, over a prescribed 30-year time interval. The National Climatic Data Center (NCDC)and National Weather Service use a homogenous and complete dataset with no changes to the collection site or missing values to determine the 30-year normal values. When developing this 30-year normal dataset, the NCDC has standard methodology to adjust the dataset for any inhomogeneities or missing data before

computing normal values. Extremes and average temperature data at six representative stations throughout the basin are shown on Plate 4-2. The location of the stations is shown on Plate 4-3.

N	Normal Temperature Based on Period of Record - 1899 Through 2021 (degrees Fahrenheit)													
		JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	ОСТ	NOV	DEC	ANNUAL
Wetumpka, AL	Max	62.40	59.60	66.90	70.00	77.90	83.60	86.40	84.70	83.00	77.10	63.10	58.60	74.80
	Mean	49.30	50.60	57.90	64.70	72.60	79.90	81.60	81.30	77.20	67.00	55.90	49.50	66.00
	Min	38.10	40.90	48.40	59.00	66.60	75.30	78.50	77.70	71.40	59.70	50.60	41.00	61.50
Selma, AL	Max	64.10	62.60	66.90	71.60	78.50	84.80	84.80	86.80	83.80	77.60	65.10	60.70	83.30
	Mean	48.80	51.20	58.50	65.40	73.10	79.80	81.80	81.50	77.20	66.90	56.30	49.80	67.00
	Min	38.80	41.20	48.20	59.40	66.00	75.40	76.70	77.00	72.20	59.60	48.40	40.50	50.60
Montgomery, AL	Max	62.10	61.70	67.10	70.60	78.50	84.00	84.90	87.00	84.50	76.70	63.90	59.60	68.60
	Mean	48.00	51.00	58.00	65.10	72.90	79.60	81.70	81.40	77.00	66.60	56.10	49.60	65.60
	Min	36.00	41.30	48.90	59.90	66.10	74.90	78.80	78.00	70.60	59.60	48.00	40.70	62.40
R. F. Henry Basin	Max	62.87	61.30	66.97	70.73	78.30	84.13	85.37	86.17	83.77	77.13	64.03	59.63	75.57
	Mean	48.70	50.93	58.13	69.47	76.53	81.93	82.73	81.97	77.10	65.53	57.00	49.63	66.20
	Min	46.59	47.80	54.52	63.04	70.30	78.28	80.19	80.29	75.79	65.48	54.34	47.04	62.56

 Table 4-1 Normal Air Temperature for Selected Sites in/near R. F. Henry Basin

Source: NOAA, National Weather Service

<u>b. Precipitation.</u> The ACT Basin lies in a region of heavy annual rainfall, which is fairly well distributed throughout the year. The normal annual precipitation for the R. F. Henry Project area is 53.44 inches. Fifty-four percent of the rainfall occurs during the winter and spring months, 26 percent in the summer, and 20 percent in the fall. The average monthly and annual precipitations for various reporting stations near the R. F. Henry Project are shown on Table 4-2. Station locations are shown on Plate 4-3. The maximum calendar year rainfall over the ACT Basin was 78 inches in 1929 and the minimum annual was 26.82 inches in 1954. The highest annual station rainfall recorded in the ACT Basin was 104.03 inches at Flat Top, Georgia, in 1949; the lowest recorded was 22.00 inches at Primrose Farm, Alabama, in 1954. The light snowfall that occasionally occurs seldom covers the ground for more than a few days and has never affected any major flood in the basin. Precipitation extremes and averages for the basin are shown on Plate 4-4.

No	Normal Precipitation Based on 30-Year Period of Record – 1991 Through 2020 (Inches)													
		JAN	FEB	MAR	APR	MAY	JUNE	JULY	AUG	SEPT	ОСТ	NOV	DEC	ANNUAL
Wetumpka, AL (USC00018859)	Mean	4.97	5.35	5.93	4.21	3.73	4.95	5.15	4.35	3.39	2.81	3.85	4.91	53.6
Selma, AL (USC00017366)	Mean	5.28	5.35	5.58	4.56	4.1	4.32	5.11	4.92	3.8	2.66	4.07	5.21	54.96
Montgomery, AL (USC00015553)	Mean	5.19	5.1	4.87	4.23	3.92	4.31	4.58	3.88	3.6	3.07	4.25	4.77	51.77
R. F. Henry Basin	Mean	5.15	5.27	5.46	4.33	3.92	4.53	4.95	4.38	3.60	2.85	4.06	4.96	53.44

Source: NOAA, National Centers for Environmental Information

4-06. Storms and Floods.

<u>a. General.</u> Flood-producing storms may occur over the basin anytime but are more frequent during the winter and early spring. These storms are usually of the frontal variety lasting two to four days. Summer storms are the convective type thundershowers with high intensity rainfall over small areas which produce local floods. In the fall, occasional heavy rains may accompany dissipating tropical cyclones.

<u>b. Record Floods.</u> A major storm system in the spring of 1990 produced record floods on the Alabama River. On 16 March 1990, with the river still high from previous rains, the entire basin received very heavy rainfall for two days. For the two-day total, R. F. Henry reported 9 inches, Millers Ferry reported 6.75 inches, and Claiborne had 9.5 inches. The upper basin received an average of 6–7 inches during this period. R. F. Henry discharged a record-breaking 220,000 cfs on 20 March 1990, producing a record tailwater of 135.4 feet NGVD29. The largest known flood for the entire period of record is the historical flood of February–March 1961 with a peak discharge of 283,200 cfs. Another significant flood occurred on 11–16 March 1929, when 10 inches of rainfall over a period of three days was recorded in the vicinity of Auburn, Alabama. A peak discharge was not recorded for the historical flood of April 1886, which is the greatest flood on record for the Millers Ferry Project downstream of R. F. Henry.

4-07. Runoff Characteristics. The tributaries contributing flow to the Alabama River above the R. F. Henry Dam exhibit wide variations in runoff characteristics. They range from very flashy in the mountainous regions of the Coosa Basin above Rome, Georgia, to very slow rising and falling in the lower reaches. The mean annual discharge for the period January 1929 through December 1999 is 23,386 cfs or about 1.3 cfs per square mile.

The average daily discharges shown on Plates 4-5 through 4-12 and the mean monthly and annual flows on Plates 4-13 through 4-15 were developed from data for the U.S. Geological Survey (USGS) gages at Selma and Montgomery, Alabama, and at the R. F. Henry Project. The data at Selma and Montgomery, Alabama, were adjusted using area ratios to the R. F. Henry site. The data were extended to 1939 to provide the same coverage as was in the previous water control manual. All three gages were needed to provide complete coverage.

4-08. Water Quality. Per the Alabama Department of Environmental Management's (ADEM) 2020 Integrated Water Quality Monitoring and Assessment Report, Water Quality in Alabama 2018-2020 (AL 303[d], 2020) Woodruff Lake designated uses are fish and wildlife and swimming.

The AL 303(d), 2020 ranks Woodruff Lake reaches as Category 1 (waters attaining all applicable water quality standards).

There are no total maximum daily load (TMDL) criteria specific to Woodruff Lake. The impoundment is subject general water quality criteria and to the qualitative criteria described ADEM Administrative Code 335-6-10-.06:

335-6-10-.06 Minimum Conditions Applicable to All State Waters. The following minimum conditions are applicable to all State waters, at all places and at all times, regardless of their uses:

(a) State waters shall be free from substances attributable to sewage, industrial wastes, or other wastes that settle in forming bottom deposits which are unsightly, putrescent, or interfere directly or indirectly with any classified water use.

(b) State waters shall be free from floating debris, oil, scum, and other floating materials attributable to sewage, industrial wastes, or other wastes in amounts sufficient to be unsightly, or which interfere directly or indirectly with any classified water use.

(c) State water shall be free from substances attributable to sewage, industrial wastes, or other wastes in concentration or combination which are toxic or harmful to human, animal, or aquatic life to the extent commensurate with the designated usage of such waters.

Woodruff Lake is classified as eutrophic. Eutrophic lakes are those with an abundance of nutrients supporting plant life proliferation. Decomposition of the plants tends to deplete dissolved oxygen in the water body.

Stratification and turnover are not significant issues at Woodruff Lake due to generally shallow depth and because it is a run-of-river impoundment.

4-09. Channel and Floodway Characteristics. The navigation channel from the mouth of the Alabama River to Montgomery, Alabama has an authorized depth of nine feet and a width of 200 feet. There are no major flood damage centers immediately downstream of the R. F. Henry Project.

4-10. Upstream Structures. Above R. F. Henry Lock and Dam are APC hydroelectric projects on the Coosa and Tallapoosa Rivers and two Corps projects, Allatoona and Carters, located above the APC Coosa projects. The Hickory Log Creek Project was constructed in 2007 by the City of Canton, Georgia and Cobb County–Marietta Water Authority (CCMWA) and is located approximately 25 miles northeast of Allatoona Dam. Richland Creek Dam and Reservoir is a pumped-storage water supply project that provides infrastructure for water withdrawals from the Etowah River as well as reservoir storage, treatment, and distribution to meet the water supply needs of Paulding County, Georgia. Table 4-3 shows these upstream projects and their drainage areas as well as data for R. F. Henry and downstream projects, Millers Ferry, and Claiborne.

Agency	Alabama River Projects	Drainage Area square miles.
Corps	*Claiborne	21,473
Corps	*Millers Ferry	20,637
Corps	RF Henry	16,233
	Coosa River Projects	
APC	**Jordan/Bouldin	10,102
APC	Mitchell	9,778
APC	Lay	9,053
APC	Logan Martin	7,743
APC	Henry	6,596
APC	Weiss	5,270
Corps	Allatoona	1,122
Corps	Carters	374
Canton/CCMWA	***Hickory Log Creek	8
Paulding County, GA	***Richland Creek Reservoir	NA

 Table 4-3 Corps, APC, and Canton/CCMWA Projects in the ACT

Agency	Alabama River Projects	Drainage Area square miles.
	Tallapoosa Projects	
APC	Thurlow	3,308
APC	Yates	3,293
APC	Martin	2,984
APC	Harris	1,454

* Downstream projects

** Jordan Dam is located on the Coosa River at river mile 18.9. Walter Bouldin Dam is located on a by-pass of the Jordan Dam and discharges into a canal which enters the Woodruff Lake at Coosa River mile 4.2.

***Water is pumped directly from the Etowah River to support project.

4-11. Downstream Structures. Below R. F. Henry Lock and Dam are two Corps projects, Millers Ferry and Claiborne Locks and Dams. Millers Ferry has a drainage area of 4,404 square miles from R. F. Henry to Millers Ferry. Claiborne has a drainage area of 836 square miles from Millers Ferry to Claiborne.

4-12. Economic Data. The watershed surrounding the R. F. Henry Project consists of Autauga and Lowndes Counties within Alabama. The watershed includes both developed urban and residential land uses and rural land uses within the watershed.

<u>a. Population.</u> The 2020 population of the two counties bordering the R. F. Henry Project totaled 69,406. The City of Prattville, located in Autauga County, had a population of 35,925 in 2019. This accounts for more than half the population within the counties. The income data for each county is shown in Table 4-4.

County	Population (2020)	Per Capita Income (dollars)(Average)	Persons Living Below Poverty (Average)
		Alabama	
Autauga County	59,095	29,804	11.2%
Lowndes County	10,311	21,298	21.9%
	69,046	25,551	16.6%

Table 4-4 Income Data per County

Source: U.S. Census Bureau, 2020

<u>b. Agriculture.</u> The R. F. Henry watershed and basin below consist of approximately 883 farms averaging 350.5 acres per farm. In 2017, the agricultural production in the area totaled \$102 million in farm products sold and total net farm earnings of \$29 million. Agriculture in the R. F. Henry watershed consists primarily of livestock, which accounts for 63 percent of the value of farm products sold. Table 4-5 contains agricultural production information and farm earnings for each of the counties within the R. F. Henry watershed and basin below.

	2005 Farm	Number	Total Farm	Acres Per	Value of Farm	Percent S	Sold From
County	Earnings (\$1,000)	of Farms	Acres (1,000)	Farm (Avg)	Products Sold (\$1,000)	Crops	Livestock
	Alabama						
Autauga County	\$6,781	371	113	305	\$21,460	58%	42%
Lowndes County	\$23,028	512	203	396	\$80,855	16%	84%
Totals	\$29,809	883	316	350.5	\$102,315	37%	63%

Source: U.S. Department of Agriculture, National Agricultural Statics Service 2017 (www.nass.usda.gov/AgCensus)

c. Industry. The leading industrial sectors that provide non-farm employment are wholesale and retail trade, services, and manufacturing. In 2019, the R. F. Henry Project area counties had 38 manufacturing reporting units that provided 2,457 jobs with total earnings of more than \$157 million. Table 4-6 shows information on the manufacturing activity for each of the counties in the R. F. Henry Project watershed and basin below.

County	No. of Manufacturing Reporting Units	Total Manufacturing Employees	Total Earnings (\$1,000)			
	Alabama					
Autauga County	23	1,593	98,623			
Lowndes County	15	864	58,473			
Totals	38	2,457	157,096			

Source: Alabama Department of Labor, Labor Market Information Division, 2019

<u>d. Flood Damages.</u> Because the dam is considered a run-of-the-river project, with very little storage, there are no quantifiable flooding impacts from the project. A table of water surface elevations at R. F. Henry and associated impacts is shown on Table 4-7.

(Feet NGVD29)	Flooding Impacts
122	Flooding of agricultural land begins
127	Widespread flooding of farmlands and of some homes and trailers along the river occurs.
132	Portions of Benton begin to flood. Numerous house trailers along the river become flooded if not moved to higher ground.
134	Portions of Autaugaville and sections of the western railway of Alabama Railroad begin to flood.
135	Considerable flooding occurs in Benton.
138	There is considerable flooding in Autaugaville and most of Benton is flooded at this level.

Intentionally left blank.

5 - DATA COLLECTION AND COMMUNICATION NETWORKS

5-01. Hydrometeorologic Stations.

a. Facilities. Management of water resources requires continuous, real-time knowledge of hydrologic conditions. The Mobile District contracts out the majority of basin data collection and maintenance to the USGS and National Weather Service (NWS) through cooperative stream gaging and precipitation network programs. The USGS, in cooperation with other federal and state agencies, maintains a network of real-time gaging stations throughout the ACT Basin. The stations continuously collect various types of data including stage, flow, and precipitation. The data are stored at the gage location and are transmitted to orbiting satellites. Figure 5-1 shows a typical encoder with wheel tape housed in a stilling well used for measuring river stage or lake elevation. Figure 5-2 shows a typical precipitation station, with rain gage, solar panel, and Geostationary Operational Environmental Satellite (GOES) antenna for transmission of data. The gage locations are discussed in Chapter 6 related to hydrologic forecasting.

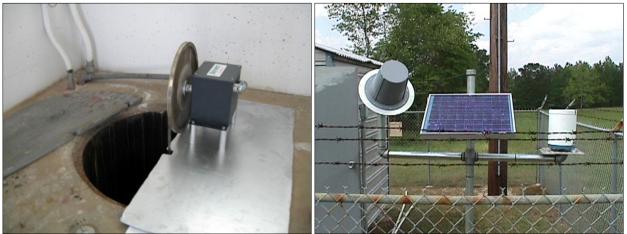


Figure 5-1 Typical Encoder with Wheel Tape for Measuring the River Stage or Lake Elevation in Stilling Well

Figure 5-2 Typical Field Installation of Precipitation Gage

Reservoir project data are obtained through each project's Supervisory Control and Data Acquisition (SCADA) system and provided to the Water Management Section both daily and in real-time.

The Water Management Section employs a staff of hydrologic field technicians and contract work to USGS to operate and maintain Corps' gages throughout the ACT Basin. Corps personnel also maintain precipitation gages at project locations over the ACT Basin.

All rainfall gages equipped as Data Collection Platforms are capable of being part of the reporting network. Data are received from 22 stations in and around the Alabama River Basin from Montgomery, Alabama, to Millers Ferry Lock and Dam. The data are recorded in 15-minute intervals and these data are reported hourly. The 10 stations listed in Table 5-1 are considered the rainfall reporting network for the R. F. Henry, Millers Ferry, and Claiborne Projects. The locations of these rainfall stations are shown on Plate 5-1. River conditions

above Montgomery, Alabama, are reflected in outflows from Jordan-Bouldin Dam on the Coosa River and the Thurlow Dam on the Tallapoosa River.

Rainfall and upstream conditions are updated regularly throughout the day. Forecast of runoff are prepared and compared to those prepared by the River Forecast Center.

Name	Agency	Agency ID	Latitude	Longitude
Montgomery, AL (at US 31)	NOAA/NWS	15550	32.41139	-86.4083
Catoma Creek near Montgomery, AL	NOAA/NWS		32.30722	-86.2994
R. F. Henry L&D near Benton, AL	NOAA/NWS		32.31667	-86.7833
Selma, AL	NOAA/NWS	17366	32.40556	-87.0186
Centreville, AL	NOAA/NWS	11520	32.94500	-87.1392
Suttle, AL	NOAA/NWS	17963	32.52917	-87.1989
Marion Junction, AL	NOAA/NWS	15116	32.44389	-87.1803
Below Millers Ferry L&D near Camden, AL	NOAA/NWS	11301	32.10000	-87.3981
Claiborne L&D near Monroeville, AL	NOAA/NWS	11690	31.61500	-87.5506

Table 5-1 Rainfall Reporting Network for the Alabama River Basin

All river stage gages equipped as Data Collection Platforms are capable of being part of the reporting network. Data are available from many stations in and adjacent to the ACT Basin as described in Table 5-2. The river stage gages are used to plan operations at the R. F. Henry Project. All these stage gages are not required for daily operations, but the information is available when desired. The locations of these and other river stage gages are shown on Plate 5-2.

In addition to the automated reporting stations, stage and flow data at APC projects are furnished to the Corps, Mobile District daily by the APC Birmingham office. The APC also receives Data Collection Platform transmissions directly from gages throughout the ACT Basin.

Data from the river-stage station at R. F. Henry can be received at any time by contacting personnel at the project. Pool and tailwater elevations as well as inflow and outflow at R. F. Henry, Millers Ferry, and Claiborne are reported each morning to the Water Management Section. Most of stations within the basin are maintained by the USGS.

USGS Gage	Name	Lat	Long	Drainage Area (sq. miles)	NGVD29 Datum	Flood Stage	Rain Gage
02420000	Alabama River Near Montgomery, AL	32.4114	-86.4083	15,087	97.90	35	No
02421000	Catoma Creek near Montgomery, AL	32.3072	-86.2994	290	151.02	20	No
02421350	Alabama River at R. F. Henry (Head Water)	32.3250	-86.7847	16,233	0.00		Yes
02421351	Alabama River at R. F. Henry (Tail Water)	32.3167	-86.7833	16,233	0.00	122	No
02423000	Alabama River at Selma, AL	32.4056	-87.0186	17,095	61.80	45	No
02424000	Cahaba River at Centreville, AL	32.9450	-87.1392	1,027	180.74	23	No

Table 5-2 Reporting Stage Gages Used for Lower Alabama River

USGS Gage	Name	Lat	Long	Drainage Area (sq. miles)	NGVD29 Datum	Flood Stage	Rain Gage
02424590	Cahaba River at Suttle, AL	32.5292	-87.1989	1,480	97.64	32	No
02425000	Cahaba River at Marion Junction	32.4439	-87.1803	1,766	86.72	36	No
02427505	Alabama River at Millers Ferry (Head Water)	32.1006	-87.3992	20,637	0.00		Yes
02427506	Alabama River at Millers Ferry (Tail Water)	32.1000	-87.3978	20,637	0.00	66	No
02428400	Alabama River at Claiborne (Head Water)	31.6150	-87.5506	21,473	0.00		No
02428401	Alabama River at Claiborne (Tail Water)	31.6134	-87.5506	21,473	0.00	42	No

<u>b. Reporting.</u> The Water Management Section operates and maintains a Water Control Data System (WCDS) for the Mobile District that integrates large volumes of hydrometeorological and project data so the basin can be regulated to meet the operational objectives of the system. The WCDS, in combination with the new Corps Water Management System (CWMS), together automate and integrate data acquisition and retrieval to best meet all Corps water management activities.

Data are collected at Corps sites and throughout the ACT Basin through a variety of sources and integrated into one verified and validated central database. The basis for automated data collection at a gage location is the Data Collection Platform. The Data Collection Platform is a computer microprocessor at the gage site. A Data Collection Platform has the capability to interrogate sensors at regular intervals to obtain real-time information (e.g., river stage, reservoir elevation, water and air temperature, precipitation). The Data Collection Platform then saves the information, performs simple analysis of it, and transmits the information to a fixed geostationary satellite. Data Collection Platforms transmit real-time data at regular intervals to the GOES System operated by NOAA. The GOES Satellite's Data Collection System sends the data directly down to the NOAA Satellite and Information Service in Wallops Island, Virginia. The data are then rebroadcast over a domestic communications satellite (DOMSAT). The Mobile District Water Management Section operates and maintains a Local Readout Ground System (LRGS) that collects the Data Collection Platform-transmitted, real-time data from the DOMSAT. Figure 5-3 depicts a typical schematic of how the system operates.

Typically, reporting stations log 15-minute data that are transmitted every hour. A few remaining gages report every four hours, but they are being transitioned to the hourly increment. All river stage and precipitation gages equipped with a Data Collection Platform and GOES antenna are capable of being part of the reporting network.

The power plant at the R. F. Henry Project can be operated locally or remotely from the control room at the Millers Ferry Dam powerhouse via a microwave link between the two projects. The remote system also produces visual observations of the project. Data from R. F. Henry Dam are automatically collected at the project and transmitted through the project's SCADA system and the Internet to Millers Ferry Dam and the Mobile District. Telephone is an option for other communications. Data for the project and the Data Collection Platforms are downloaded both daily and hourly through the Corps' server network to the Water Management Section.

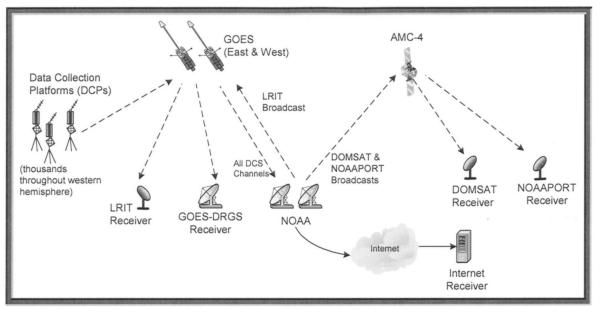


Figure 5-3 Typical Configuration of the GOES System

c. Maintenance. Maintenance of data reporting equipment is a cooperative effort among the Corps, USGS, and NWS. The USGS, in cooperation with other federal and state agencies, maintains a network of real-time Data Collection Platform stream gaging stations throughout the ACT Basin. The USGS is responsible for the supervision and maintenance of the real-time Data Collection Platform gaging stations and the collection and distribution of streamflow data. In addition, the USGS maintains a systematic measurement program at the stations so the stage-discharge relationship for each station is current. Through cooperative arrangements with the USGS, discharge measurements at key ACT Basin locations are made to maintain the most current stage-discharge relationships at the stations. The NWS also maintains precipitation data for the flood control precipitation (FC-1) network.

If gages appear to be out of service, the following agencies can be contacted for repair:

USACE, Mobile District, 109 Saint Joseph Street, Mobile, AL 36602-3630 Phone: (251) 690-2730 Web: <u>https://www.sam.usace.army.mil/Missions/Civil-Works/Water-Management/</u>

USGS South Atlantic Water Science Center - Georgia, 1770 Corporate Dr., Suite 500, Norcross, Georgia 30093 Phone: (678) 924-6700 Web: <u>http://ga.water.usgs.gov</u>

USGS Lower Mississippi-Gulf Water Science Center - Alabama, 75 TechnaCenter Drive, Montgomery, Alabama 36117 Phone: (334) 395-4120 Web: <u>http://al.water.usgs.gov</u>

NWS Southern Region, 819 Taylor Street, Room 10E09, Fort Worth, TX 76102Phone: (817) 978-1100Web: http://www.weather.gov/srh/

5-02. Water Quality Stations. There are no Corps operated or maintained water quality stations in the R. F. Henry Project area. However, there are some real-time water quality parameters collected at several of the stream gages maintained by the USGS for general water quality monitoring purposes. The data for these stations can be obtained from the USGS yearly publication, Water Resources Data Alabama. ADEM also periodically samples water quality throughout the Alabama portion of the basin on a rotating schedule.

5-03. Sediment Stations. To provide adequate surveillance of sedimentation, a network of sediment ranges was established for R. E. "Bob" Woodruff Lake in 1974. Quantitative computations can be made from these ranges to determine the extent and degree of sedimentation and erosion. General conditions and changes have been measured and recorded using this network. The network of sediment stations is shown on Plate 4-1.

Sediment surveys were conducted in 1982, 1988, and 2009. Tetra Tech, Inc., was retained to conduct an analysis of the data and determine the extent and degree of sedimentation and erosion that has occurred in the lake and its tributaries over the years and, where appropriate, to speculate on the causes of those changes. This analysis and results are presented in a report entitled; "Sedimentation and Erosion Analysis for Alabama River Lakes." Sedimentation and erosion classifications were developed for each range. Based on the percentage change for the entire cross section, range cross sections were classified for sedimentation as "Heavy" (greater than 15 percent change), "Medium" (5 to 15 percent change), "Light" (0 to 5 percent), and "None" (0 or negative change). Erosion classifications were also developed from bank retreat and advance rates. A bank retreat or advance rate is the average change in location, measured in feet, of the shoreline. It is the area bounded between two cross section profiles at the shore erosion zone (square-feet) divided by the height of shore erosion zone (feet). The shorelines were separated into two groups, erosional and depositional. The erosional group was further divided into three classes by percentile. The 25 percent of shorelines showing the greatest bank retreat were classed as "Acute," the middle 50 percent in bank retreat were classed as "Moderate," and the 25 percent with the least bank retreat were classed as "Slight." Shorelines in the depositional group were classed as "Deposition."

R. E. "Bob" Woodruff above R. F. Henry Lock and Dam is the upstream most segment of the Alabama River, which is formed at the confluence of the Coosa and Tallapoosa Rivers. The Alabama River portion is represented by 15 sedimentation ranges, and the Coosa and Tallapoosa Rivers are represented by one range each near their mouths. Results are displayed in Table 5-3.

Each of the 2009 range datasets were impacted by discrepancies. Data gaps and misalignment/mis-location along the stationing were pervasive. Neither the data gaps nor the misalignment/mis-locations could be corrected; thus, the quantitative analysis was limited to the historical data, and only five of the 17 ranges were analyzed qualitatively with the 2009 data.

Although the discrepancies in the 2009 data were so great that the ranges could not even be evaluated qualitatively, observations made during the site visit indicated that the trends shown in the analysis from 1974 to 1988 are ongoing with heavy deposition and acute right bank erosion on the Tallapoosa River at 16A and slight to moderate erosion on the Coosa River at range 17A. The Alabama River ranges appear relatively stable in terms of sedimentation. All are classed as "None" or "Light" with the exception of ranges 07A and 14A are each classed as "Medium." Range 14A appears to be located at one of the most active sections of the river, immediately downstream of the Tallapoosa River Lower confluence; thus, the degree of sedimentation indicated by the analysis is not unexpected. The more typical ranges show relatively stable beds from 1974 to 1988 with little deposition or scour. Shoreline conditions are fairly uniform along the entire length with about two-thirds of the shorelines classed as erosional and the remaining one-third classed as depositional.

		Qualitative Sedimentation	Sedimentation	Shoreline Erosion Classification: 1974 to 1988		
Rangeline	Location	Classification: 1988 to 2009	Classification: 1974 to 1988	Left Bank	Right Bank	
1A	Alabama River	Light	Light	Deposition	Deposition	
2A	Alabama River		Heavy	Deposition	Deposition	
3A	Alabama River		Light	Moderate	Moderate	
4A	Alabama River	None/Scour	None	Deposition	Deposition	
5A	Alabama River		None	Slight	Acute	
6A	Alabama River	None/Scour	None	Acute	Moderate	
7A	Alabama River		Medium	Slight	Moderate	
8A	Alabama River	None/Scour	None	Slight	Moderate	
9A	Alabama River	None/Scour	None	Slight	Acute	
10A	Alabama River		None	Acute	Deposition	
11A	Alabama River	None/Scour	None	Deposition	Moderate	
12A	Alabama River		None	Moderate	Moderate	
13A	Alabama River		None	Moderate	Acute	
14A	Alabama River		Medium	Deposition	Deposition	
15A	Alabama River		None	Deposition	Moderate	
16A	Tallapoosa River		Heavy	Deposition	Acute	
17A	Coosa River		None	Slight	Moderate	

Table 5-3 Sedimentation Range Results for R. E. "Bob" Woodruff Lake

Heavy sedimentation > 15% change in area.

Medium sedimentation = 5 to 15% change in area.

Light sedimentation = 0 to 5% change in area.

None/Scour = negative % change in area.

Acute erosion >75th percentile in average shoreline retreat.

Moderate erosion = 25^{th} to 75^{th} percentile in average shoreline retreat. Slight erosion < 25^{th} percentile in average shoreline retreat.

Deposition = positive value of average shoreline change.

Unclassified range = no analysis.

5-04. Recording Hydrologic Data. An effective decision support system requires efficient data input, storage, retrieval, and capable information processing. Corps-wide standard software and database structure are used for real-time water control. Time series hydrometeorological data are stored and retrieved using the CWMS Oracle database. In the event this database is unavailable, data can alternately be stored in the Hydrologic Engineering Center Data Storage System (HEC-DSS).

To provide stream gage and precipitation data needed to support proper analysis, a DOMSAT Receive Station (DRS) is used to retrieve DCP data from gages throughout the ACF Basin. The DRS equipment and software then receives the DOMSAT data stream, decodes the DCPs of interest and reformats the data for direct ingest into a HEC-DSS database. Reservoir data are received through a link with the SCADA system, which monitors and records reservoir conditions and operations in real time.

Most reservoir data are transmitted in hourly increments for inclusion in daily log sheets that are retained indefinitely. Gage data are transmitted in increments of 15 minutes, one-hour, or

other intervals. Reservoir data are examined and recorded in water control models every morning (or other times when needed). The data are automatically transferred to forecast models.

Automated timed processes also provide provisional real-time data needed for support of real-time operational decisions. Interagency data exchange has been implemented with the USGS and NWS Southeast River Forecast Center (SERFC). A direct link to SERFC is maintained to provide real-time products generated by NWS offices. Information includes weather and flood forecasts and warnings, tropical storm information, Next Generation Weather Radar (NEXRAD) rainfall, graphical weather maps, and more. Likewise, a direct link to USGS gages in the field allows for direct downloading of USGS data to Corps databases.

5-05. Communication Network. The global network of the Corps consists of private, dedicated, leased lines between every Division and District office worldwide. Those lines are procured through a minimum of two General Services Administration-approved telephone vendors, and each office has a minimum of two connections, one for each vendor. The primary protocol of the entire Corps network is Ethernet. The reliability of the Corps' network is considered a command priority and, as such, supports a dedicated 24 hours per day Network Operations Center. The use of multiple telephone companies supplying the network connections minimizes the risk of a one cable cut causing an outage for any office. Such dual redundancy, plus the use of satellite data acquisition, makes for a very reliable water control network infrastructure.

The Water Management Section has a critical requirement to be available during emergency situations for operation of the ACT Basin and to ensure data acquisition and storage remain functional. The Water Management Section must be able to function in cases of flooding or other disasters, which typically are followed by the loss of commercial electricity. The WCDS servers and the LRGS each have individual uninterruptable power supply (UPS) and a large UPS unit specifically for the portion of Mobile District Office in which the Water Management Section resides to maintain power for operational needs.

In the event of a catastrophic incident that causes loss of communication or complete loss of access to the Mobile District Office and the WCDS and CWMS servers located on site, a Continuity of Operations Program (COOP) site is being set up as a backup to these systems. This site will have servers that mirror the WCDS and CWMS servers located at the Mobile District Office allowing Water Managers to continue operating with no interruption or loss of data. It is currently planned that the COOP site will be located at the SAD Office in Atlanta, Georgia.

The primary communication network of the R. F. Henry Project is a SCADA system network. The SCADA network includes a microwave link between R. F. Henry and Millers Ferry Dam. The SCADA network also monitors powerhouse conditions and digitally records real-time project data hourly. The data include physical conditions at the reservoir such as pool elevations, outflow, river stages, generation, and rainfall. Special instructions or deviations are usually transmitted by email, telephone, or fax.

Emergency communication is available at the following numbers:

Water Management Section	251-690-2737
Chief of Water Management	251-690-2730 or 251-509-5368 (cell)
R. F. Henry Powerhouse*	334-875-4400

5-06. Communication with Project.

a. Between Regulating Office and Project Office. Communication between the Water Management Section and R. F. Henry Lock and Dam is by commercial telephone and computer network. The Water Management Section can transfer current data files from the Millers Ferry computer at any time using the Local Data Server (LDS) using the File Transfer Protocol (FTP). During emergencies, a two-way voice radio in the Readiness Branch of Operations Division can be used for communication with Millers Ferry only. For powerhouse and spillway operations, communication is between Water Management Section and powerhouse operating personnel at either Jones Bluff or Millers Ferry. Millers Ferry communicates with R. F. Henry lock tenders by Private Access Exchange (PAX) or Southern Link Radio System. The equipment is located in the powerhouse at both projects.

b. Between Regulating/Project Office and Others. The Water Management Section communicates daily with the NWS and APC to exchange data and forecasting information. The data exchange is made by computer and is supplemented by telephone and facsimile when necessary. The Water Management Section also has a computer link with the NWS's Advanced Weather Interactive Processing System (AWIPS) communication system via the River Forecast Center in Atlanta, Georgia. The Water Management Section, Millers Ferry, and Claiborne all use a telephone auto-answer recorded message to provide daily information to the public. R. F. Henry data are provided via the Millers Ferry recording. Water resources information is available to the public at the Corps' website

<u>https://www.sam.usace.army.mil/Missions/Civil-Works/Water-Management/</u>. The site contains real-time information, historical data, and general information that may be of interest to the public.

To warn the public at the start of a hydropower release downstream, a warning horn is activated by the operator from the unit controls. An audio detector or electrical current detector verifies the horn has sounded and allows the unit start-up sequence to continue. The horn will continue to sound for two minutes before the unit starts. The R. F. Henry Spillway has two horns that are initiated from the Millers Ferry/Jones Bluff Powerhouse SCADA system. The horns are activated by powerhouse operators before a gate is raised from its sill. The horns sound for two minutes and are verified through audio detectors and electrical current detectors.

5-07. Project Reporting Instructions. In addition to automated data, project operators maintain record logs of gate position, water elevation, and other relevant hydrological information including inflow and discharge. That information is stored and available to the Water Management Section through the Corps' network. The Water Management Section maintains constant contact with project operators. Operators notify the Water Management Section if changes in conditions occur. Unforeseen or emergency conditions at the project that require unscheduled manipulations of the reservoir should be reported to the Water Management Section as soon as possible.

If the automatic data collection and transfer are not working, projects are required to fax or email daily or hourly project data to the Water Management Section. The Water Management Section staff will manually input the information into the database. In addition, Mobile District Power Projects must verify pool level gage readings each week, in accordance with Standard Operating Procedure, Weekly Verification of Gauge Readings, Mobile District Power Projects dated 19 February 2008, and CESAD SOP 1130-2-6 dated 21 July 2006. Those procedures require that powerhouse operators check the accuracy of pool monitoring equipment by verifying readings of the equipment against gage readings at each plant. That information is logged into the Official Log upon completion and furnished to the master plant. A Trouble Report to management communicates any discrepancies with the readings. Operations Division, Hydropower Section will be notified by electronic mail when verification is complete. The email notification will include findings of the verification.

Project personnel or the Hydropower Section within Operations Division, or both, are responsible for requesting any scheduled system hydropower unit outages in excess of two hours. The out-of-service times for the hydropower units are reported back to Water Management upon completion of outages. Forced outages are also reported with an estimated return time, if possible. Any forced or scheduled outages causing the project to miss scheduled water release targets must be immediately reported to the Water Management Section and to Southeastern Power Administration (SEPA). In such cases, minimum flow requirements can be met through spilling.

5-08. Warnings. During floods, dangerous flow conditions, or other emergencies, the proper authorities and the public must be informed. In general, flood warnings are coupled with river forecasting. The NWS has the legal responsibility for issuing flood forecast to the public, and that agency will have the lead role for disseminating the information. For emergencies involving the R. F. Henry Project, the operator on duty should notify the Water Management Section, Operations Division, and the Operations Project Manager at the project. A coordinated effort among those offices and the District's Emergency Management Office will develop notifications to make available to local law enforcement, government officials and emergency management agencies.

5-09. Role of Regulating Office. The Water Management Section of the Mobile District Office is responsible for developing operating procedures for both flood and non-flood conditions. Plans are developed to use most fully the water resources potential of each project within the constraints of authorized functions. Those plans are presented in water control manuals such as this one. Water control manual preparation and updating is a routine operation of the Water Management Section. In addition, the Water Management Section maintains information on current and anticipated conditions, precipitation, and river-stage data to provide the background necessary for best overall operation. The Water Management Section arranges communication channels to the Power Project Manager and other necessary personnel. Instructions pertaining to reservoir regulation are issued to the Power Project Manager; however, routine instructions are normally issued directly to the powerhouse operator on duty.

5-10. Role of Power Project Manager. The Power Project Manager should be completely familiar with the approved operating plans for the R. F. Henry and Millers Ferry Projects. The Power Project Manager is responsible for implementing actions under the approved water control plans and carrying out special instructions from the Water Management Section. The Power Project Manager is expected to maintain and furnish records requested from him by the Water Management Section. Training sessions should be held as needed to ensure that an adequate number of personnel are informed of proper operating procedures for reservoir regulation. Unforeseen or emergency conditions at the project that require unscheduled manipulation of the reservoir should be reported to the Water Management Section as soon as practicable.

Intentionally left blank.

6 - HYDROLOGIC FORECASTS

6-01. General. Two forecasts are available for locations along the Alabama River. The NWS's River Forecast Center prepares river forecasts for the general public and for use by the Corps. In addition, the Water Management Section prepares forecasts for internal use. All features of the forecasting procedure are subject to modification and refinement as additional data and operating experience dictate. In general, forecasts are made for Corps projects and control points along the river. Inflows and outflows are estimated for R. F. Henry, Millers Ferry, and Claiborne Projects.

The Corps has developed techniques to conduct forecasting in support of the regulation of the ACT Basin. In addition, the Corps has a strong reliance on other Federal agencies, such as the NWS and the USGS, to help maintain accurate data and forecast products to aid in making the most prudent water management decisions. The regulation of multipurpose projects requires scheduling releases and storage on the basis of both observed and forecasted hydrologic events throughout the basin. During both normal and below-normal runoff conditions, releases through the power plants are scheduled on the basis of water availability, to the extent reasonably possible, during peak periods to generate electricity during periods of greatest demand. The release level and schedules are dependent on current and anticipated hydrologic events. The most efficient use of water is always a goal, especially during the course of a hydrologic cycle when below-normal streamflow is occurring. Reliable forecasts of reservoir inflow and other hydrologic events that influence streamflow are critical to the efficient regulation of the ACT System.

a. Role of USACE. The Water Management Section maintains real-time observation of river and weather conditions in the Mobile District. The Water Management Section has capabilities to make forecasts for several areas in the ACT Basin. Those areas include all the Federal projects and other locations. Observation of real-time stream conditions provides guidance of the accuracy of the forecasts. The Corps maintains contact with the River Forecast Center to receive forecast and other data as needed. Daily operation of the ACT River Basin during normal, flood risk management, and drought conservation regulation reguires accurate, continual short-range and long-range elevation, streamflow, and river-stage forecasting. These short-range inflow forecasts are used as input in computer model simulations so that project release determinations can be optimized to achieve the regulation objectives stated in this manual. The Water Management Section continuously monitors the weather conditions occurring throughout the basin and the weather and hydrologic forecasts issued by the NWS. The Water Management Section then develops forecasts to meet the regulation objectives of regulating the ACT projects. The Water Management Section prepares five-week inflow and lake elevation forecasts weekly based on estimates of rainfall and historical observed data in the basin. These projections assist in maintaining system balance and providing project staff and the public lake level trends based on the current hydrology and operational goals of the period. In addition, the Water Management Section provides weekly hydropower generation forecasts based on current power plant capacity, latest hydrological conditions, and system water availability.

<u>b.</u> Role of Other Agencies. The NWS is responsible for preparing and publicly disseminating forecasts relating to precipitation, temperatures, and other meteorological elements related to weather and weather-related forecasting in the ACT Basin. The Water Management Section uses the NWS as a key source of information for weather forecasts. The meteorological forecasting provided by the Birmingham, Alabama and Peachtree City, Georgia offices of the NWS is considered critical to the Corps' water resources management mission.

The 24- and 48-hour Quantitative Precipitation Forecasts (QPFs) are invaluable in providing guidance for proactive management of basin release determinations. Using precipitation forecasts and subsequent runoff directly relates to project release decisions.

1) The NWS is the Federal agency responsible for preparing and issuing streamflow and river-stage forecasts for public dissemination. That role is the responsibility of the SERFC co-located in Peachtree City, Georgia with the Peachtree City Weather Forecast Office. SERFC is responsible for the supervision and coordination of streamflow and river-stage forecasting services provided by the NWS Forecast Office in Peachtree City, Georgia. SERFC routinely prepares and distributes five-day streamflow and river-stage forecasts at key gaging stations along the Alabama, Coosa, and Tallapoosa Rivers. Streamflow forecasts are available at additional forecast points during periods of above normal rainfall. In addition, SERFC provides a revised regional QPF on the basis of local expertise beyond the NWS Hydrologic Prediction Center QPF. SERFC also provides the Water Management Section with flow forecasts for selected locations on request. Table 6-1 lists the forecast stations in the Alabama River Basin.

	Daily Stage/Eleva	ation Forecasts (F	eet NGVD29)	
	Station	Station ID	Action Stage*	Flood Stage**
	Montgomery	MGMA1	26	35
	R. F. Henry TW	TYLA1	122	122
	Millers Ferry TW	MRFA1	61	66
	Claiborne TW	CLBA1	35	42
Daily	24-hour Inflow in Mor	ning (10 a.m.) Stat	te Forecast Discuss	sion
Reservoir		Station ID		
R. F. Henry		TYLA1		
Millers Ferry		MRFA1		
	Additional Stage Fo	recasts Only for S	ignificant Rises	
River/Creek	Station	Station ID	Action Stage	Flood Stage
Coosa	Weiss Dam	CREA1		564
Coosa	Gadsden	GAPA1		511
Coosa	Logan Martin Dam	CCSA1		465
Coosa	Childersburg	CHLA1		402
Coosa	Wetumpka	WETA1	40	45
Tallapoosa	Wadley	WDLA1		13
Tallapoosa	Milstead	MILA1	15	40
Tallapoosa	Tallapoosa Wt Pit	MGYA1	15	25
Catoma Creek	Montgomery	CATA1	16	20
Alabama	Selma	SELA1	30	45
Cahaba	Cahaba Heights	CHGA1		14
Cahaba	Centreville	CKLA1	20	23
Cahaba	Suttle	SUTA1	28	32
Cahaba	Marion Junction	MNJA1	15	36

Table 6-1 Southeast River Forecast Center Forecast Locations for Alabama River Basin

* Action Stage – The stage which some type of mitigation action in preparation for possible significant hydrologic activity occurs.

** Flood Stage – The stage for which a rise in water surface level begins to impact lives, property, or commerce.

2) The Corps and SERFC have a cyclical procedure for providing forecast data between Federal agencies. As soon as reservoir release decisions have been planned and scheduled for the proceeding days, the release decision data are sent to SERFC. Taking release decision data, coupled with local inflow forecasts at forecast points along the ACT, SERFC can provide inflow forecasts into Corps projects. Having revised inflow forecasts from SERFC, the Corps has up-to-date forecast data to make the following days' release decisions.

(3) APC provides hourly discharge data from APC's Jordan, Bouldin, and Thurlow projects and provides a seven-day forecast of average daily releases from Jordan, Bouldin, and Thurlow projects.

6-02. Flood Condition Forecasts. During flood conditions, forecasts are made for two conditions: rainfall that has already fallen and for potential rainfall (or expected rainfall). Proactive decisions can be made on the basis of known events and what if scenarios. The Water Management Section prepares forecasts and receives the official forecasts from SERFC.

<u>a. Requirements.</u> Accurate flood forecasting requires a knowledge of antecedent conditions, rainfall and runoff that has occurred, and tables or unit hydrographs to apply the runoff to existing flow conditions. Predictive QPF data are needed for what if scenario. Both water-on-the-ground and predictive QPF forecast are used in making release decisions.

<u>b. Methods.</u> For determining flood conditions at the R. F. Henry Project, the observed hourly discharges out of APC's Jordan, Bouldin, and Thurlow projects along with the APC's daily seven-day forecast for the Coosa and Tallapoosa Rivers are used.

6-03. Conservation Purpose Forecasts. The R. F. Henry Project is essentially a run-of-theriver project and has no practical conservation storage in the reservoir. Therefore, it is unnecessary to forecast for conservation purposes at this project.

6-04. Long-Range Forecasts.

<u>a. Requirements.</u> The Alabama River Projects are modified run-of-the-river projects and have no practical conservation storage in the reservoirs. However, the Corps does utilize available information from the NWS and projected release forecast from APC projects on the Coosa and Tallapoosa Rivers to aid in the operation of the system and for planning studies.

<u>b. Methods.</u> In extreme conditions, three-month and six-month forecasts can be produced based on observed hydrology and comparative percentage hydrology inflows into the ACT Basin. One-month and three-month outlooks for temperature and precipitation produced by the NWS Climate Prediction Center are used in long-range planning for prudent water management of the ACT Projects.

6-05. Drought Forecast.

<u>a. Requirements.</u> ER 1110-2-1941, Drought Contingency Plans, dated 02 February 2018, called for developing drought contingency plans for all Corps' reservoirs. Drought recognition and drought forecast information can be used in conjunction with the drought contingency plan.

<u>b. Methods.</u> Various products are used to detect the extent and severity of basin drought conditions. One key indicator is the U.S. Drought Monitor. The Palmer Drought Severity Index is also used as a regional drought indicator. The index is a soil moisture algorithm calibrated for relatively homogeneous regions and may lag emerging droughts by several months. The Alabama Office of State Climatologist also produces a Lawn and Garden Index which gives a basin-wide ability to determine the extent and severity of drought. The runoff forecasts

developed for both short and long-range time periods reflect drought conditions when appropriate. There is also a heavy reliance on latest El Niño/La Niña-Southern Oscillation (ENSO) forecast modeling to represent the potential impacts of La Niña on drought conditions and spring inflows. Long-range models are used with greater frequency during drought conditions to forecast potential impacts to reservoir elevations, ability to meet minimum flows, and water supply availability. A long-term, numerical model, Extended Streamflow Prediction developed by the NWS, provides probabilistic forecasts of streamflow on the basis of climatic conditions, streamflow, and soil moisture. Extended Streamflow Prediction results are used in projecting possible future drought conditions. Other parameters and models can indicate a lack of rainfall and runoff and the degree of severity and continuance of a drought.

<u>c. Reference Documents.</u> The Drought Contingency Plan for the R. F. Henry Project is summarized in Section 7-12. The complete ACT Drought Contingency Plan is provided in Exhibit D.

7 - WATER CONTROL PLAN

7-01. General Objectives. The Congressionally authorized purposes for the R. F. Henry Lock and Dam Project as contained in its authorizing legislation were flood risk management (flood control), navigation, and hydropower. Flood risk management was deleted from the project prior to construction. The R. F. Henry Dam is operated as part of the Alabama Rivers project to provide navigation depths upstream to Montgomery, Alabama. Several other project purposes have been added through general authorizations including water quality, recreation, and fish and wildlife conservation and mitigation. The regulation plan seeks to balance the needs of all project purposes at the R. F. Henry Project and at other projects in the ACT Basin and is intended for use in day-to-day, real-time water management decision making and for training new personnel.

7-02. Constraints.

<u>a. Full Discharge Capacity.</u> The full discharge capacity of the spillway at elevation 125.0 feet NGVD29 is 124,500 cfs, the equivalent of a flood which may be expected to occur once in 1.5 years. Once the spillway capacity is reached a free overflow condition will prevail. There will be little difference in the water surface upstream and downstream of the dam. The river may continue to rise just as it would in the absence of any structure.

<u>b. Head Limitation.</u> Design criteria for stability against overturning and sliding of the R. F. Henry structures make it imperative that the head, or difference between headwater and tailwater, does not exceed 47 feet at any time. All operational planning has been based on this strict limitation. During high flows, generating units will be shut down when the operating head decreases to 15.5 feet.

<u>c. Gate Opening Schedule.</u> During construction, eight gates were built by one contractor, and the other three built by another contractor. Since the beginning of operation, gates 1–3 vibrated at low flows. Therefore, these gates are not to be used until all the gates can be opened to step 5. This corresponds to a tailwater elevation of 98 feet NGVD29.

7-03. Overall Plan for Water Control. The reservoir elevation will be maintained near the normal pool of 125.0 feet NGVD29 and allowed to fluctuate between the operating range of 123.0 and 126.0 feet NGVD29 by passing the inflow through the power plant and/or the spillway gates until the powerhouse becomes inoperative. When the powerhouse becomes inoperative, additional spillway gates will be opened to maintain the pool between elevations 123.0 and 126.0 feet NGVD29.

Discharges above approximately 112,000 cfs will cause the power plant to be nonproductive because of the high tailwater so that, for higher flows, no outflow will pass through the turbines. With the turbines out of service, spillway gates will be opened to lower and maintain the pool between elevations 123.0 feet NGVD29 and 126.0 feet NGVD29. When the inflow exceeds approximately 125,000 cfs, the spillway capacity will be reached, and there will be no control over the outflow. At such high flow, there will be little difference in the water level above and below the dam, and the flow condition will be that of a natural river in flood. The gates will remain in the full open position until the pool peaks and recedes. As the pool level recedes, spillway gates will be lowered to maintain the elevation between 123.0 feet NGVD29 and 126.0 feet NGVD29. When the tailwater is sufficiently low to restart the powerhouse, the spillway gates will be lowered, and the power plant and spillway gates will be used to maintain the elevation between 123.0 feet NGVD29 and 126.0 feet NGVD29. Gate operating instructions are

given in the following paragraph. Any departures from this operating schedule will be made only as directed by the Water Management Section. Plate 7-1 shows total spillway and overbank discharge for pool levels above elevation 125.0 feet NGVD29. The tailwater rating curve is shown on Plate 7-2. In periods when flow is less than powerhouse capability, peaking power releases will be made as described in Paragraph 7-10.b. More detailed instructions for water control operations are given in the following paragraphs.

a. Operation of Spillway Gates. The spillway gates will be operated as directed by the Power Project Manager to maintain the pool between elevations 123.0 feet NGVD29 and 126.0 feet NGVD29 except during floods with inflows in excess of spillway capacity (see Constraints Paragraph 7-02.c. above). When inflow and pool conditions require operation of the spillway, the gates will be operated in the order and increments of openings shown on Plates 7-4 through 7-11. The 11 spillway gates are numbered in sequence beginning at the right bank or west end of the spillway, adjacent to the powerhouse. Gate adjustments will be made as necessary and as specified by the above mentioned plates to maintain the pool between limiting elevations 123.0 feet NGVD29 and 126.0 feet NGVD29. For inflows in excess of spillway capacity the gates will be left in the fully open position until the pool has peaked and recedes to elevation 125.0 feet NGVD29. When this elevation is reached, the operator will begin closing gates to pass the inflow, in excess of power plant and lock operation discharge, necessary to keep the pool within the established limits.

7-04. Standing Instructions to Project Operator. Exhibit C, Standing Instructions to the Powerhouse Operator for Water Control, describes the operator's responsibilities considered necessary for reservoir regulation. These duties include reservoir operating procedures, data collecting, and data reporting.

7-05. Flood Risk Management. There is no flood risk management storage in the R. F. Henry Project. Flowage easements have been obtained encompassing all lands subjected to an increased frequency of flooding from the operation of the project. Section 2-05 describes the real estate acquisition lines.

7-06. Recreation. Most recreational activities at R. E. "Bob" Woodruff Lake occur during the summer months. Because R. F. Henry operates to maintain a generally stable pool, access to recreational areas, such as swimming beaches and boat ramps, are generally not limited. Other recreational opportunities are hiking trails, picnic areas, a fishing deck, and camping.

The Operations Project Manager will be responsible for contacting various lakeshore interests and keeping the public informed of lake conditions during drawdown periods. The Operations Project Manager will close beaches and boat ramps as necessary, patrol the lake, mark hazards, and perform other necessary tasks to mitigate the effects of low lake levels. Section 2-06 describes the public facilities available at the project. Occasionally, releases may be scheduled for special recreational events such as river float trips.

7-07. Water Quality. Flows from R. F. Henry Dam are used downstream to provide the lowest flow over a seven-day period that would occur once in 10 years (7Q10) of 6,600 cfs below Claiborne (determined from observed flows between 1929–1981 at the USGS gage 02429500, Alabama River at Claiborne, Alabama). Several industries on the Alabama River have designed effluent discharges and have State discharge permits based on this dilution flow. Whenever flows recede to this level, conditions will be closely monitored so adequate warning can be given if it is necessary to reduce the flows even further. Section 7-10 explains the procedures to be followed should the outflow drop to a level which is not sufficient enough to support the 6,600 cfs flow below Claiborne.

7-08. Fish and Wildlife. The impoundment is favorable for the establishment of a sports fishery. The pool will be maintained at a fairly constant level except during floods when high inflows cause a rise in the reservoir level. This relatively stable pool during the spring spawning season is beneficial to the production of crappie, largemouth and smallmouth bass, shellcracker, warmouth, and sunfishes but is limited by the relatively thin layer of conservation storage and static head limitations of the project.

When Alabama River flow and project conditions allow, the Corps operates the lock from February through May to facilitate downstream/upstream passage of migratory fishes. While there can be slight differences in the locking technique each year, generally two fish locking cycles are performed each day between 8:00 a.m. and 4:00 p.m., depending on facility staffing, one in the morning and one in the afternoon.

7-09. Water Conservation/Water Supply. Based upon information provided by the Alabama Office of Water Resource in 2010, there are two major withdrawals that occur from R. E. "Bob" Woodruff Lake: International Paper at Prattville and the E. B. Harris Southern Company Plant. There are also two minor irrigation withdrawals from the lake by Benton Farms and River Bend Sod. Also, the International Paper (Riverdale Mill) located below the R. F. Henry Project requests a minimum average of six hours of operation from R. F. Henry.

7-10. Hydroelectric Power. The Jones Bluff Powerhouse is operated as a run-of-river hydropower plant for the production of hydroelectric energy and capacity. Depending upon flow, the plant is either continuously running (high flow) or peaking (low flow) on a seven-day basis. The output from the plant is marketed by the SEPA in accordance with provisions in the Flood Control Act of 1944. The responsibility under this Act for determining the amount of power that can be produced from this project has been delegated to the Mobile District Commander. The District Commander relies on the Water Management Section to make weekly and daily determinations of hydropower that can be generated. The average annual energy produced at R. F. Henry from fiscal year (FY) 2012 to 2020 was 287,795 megawatt hours (MWh) with a high of 366,836 MWh (2013) and a low of 254,257 MWh (2012).

a. Normal Operation. The powerhouse at R. F. Henry Dam is operated to furnish peak energy. The energy is marketed to the government's preference customers under terms of contracts negotiated and administered by SEPA. The generation (and water release) is based on a declaration of energy and capacity available that is prepared weekly by the Mobile District on the basis of the ACT Water Control Manual. The declarations, which are designed to keep the pools within the established seasonal and pondage limits, where practicable, are prepared by the Water Management Section of the Mobile District and furnished to the SAD Office for coordination of the hydropower projects within the Alabama-Georgia-South Carolina power marketing system. Actual daily and hourly scheduling of generation is coordinated by the Water Management Section, SEPA, and the hydropower customers. Local restraints can dictate generation during certain hours. Performance curves which indicate the discharge capacity and power output capability at various operating heads for a single turbogenerator unit are shown on Plate 7-3.

<u>b. High-Flow Operation.</u> During periods when the reservoir inflow is equal to or greater than the capacity of the turbines (about 35,200 cfs), the power plant will be operated at full capacity around the clock. As the flow increases, rising tailwater elevations will reduce the head and the power output. When the head decreases to approximately 15.5 feet, the units will be shut down.

c. Low-Flow Operation. The hydropower operation during extended low-flow or drought periods is slightly different from the normal operation. The maximum allowable drawdown is elevation 123.0 feet NGVD29. Provisions have been made for an emergency drawdown elevation of 122.0 feet NGVD29. During extended low-flow periods the Water Management Section will establish a target tailwater elevation at Claiborne Lock and Dam. The Water Management Section will schedule sufficient daily generation and discharge from R. F. Henry and Millers Ferry to maintain the target tailwater elevation. If the generation schedule causes the pool to drop to elevation 122.5 feet NGVD29, the Project Operator for water control will notify the Water Management Section. In no case will releases be made if the pool falls to elevation 122.0 feet NGVD29 unless specifically directed by the Water Control Manager. Because the upstream APC projects do not normally release as much water on weekends as weekdays, the R. F. Henry pool can be expected to be at its lowest level on Monday and highest level on Friday during the period.

7-11. Navigation. Navigation is an important use of water resources in the ACT Basin. The Alabama River, from Montgomery, Alabama, downstream to the Mobile, Alabama area, provides a navigation route for commercial barge traffic, serving as a regional economic resource. A minimum flow is required to ensure usable water depths to support navigation. Congress has authorized continuous navigation on the river when sufficient water is available. The three Corps locks and dams on the Alabama River and a combination of dredging, river training works, and flow augmentation together support navigation depths on the river. The lack of regular dredging and routine maintenance has led to inadequate depths at times in the Alabama River navigation channel.

When supported by maintenance dredging, ACT Basin reservoir storage, and hydrologic conditions, adequate flows will provide a reliable navigation channel. In so doing, the goal of the water control plan is to ensure a predictable minimum navigable channel in the Alabama River for a continuous period that is sufficient for navigation use. Figure 7-1 shows the effect of dredging on flow requirements for different navigation channel depths using 2004–2010 survey data. As shown on Figure 7-1, pre-dredging conditions exist between November and April; dredging occurs between May and August; and post-dredging conditions exist from September through October, until November rainfall causes shoaling to occur somewhere along the navigation channel.

A 9.0-foot-deep by 200-foot-wide navigation channel is authorized on the Alabama River to Montgomery, Alabama. When a 9.0-foot channel cannot be met, a shallower 7.5-foot channel would still allow for light loaded barges moving through the navigation system. A minimum depth of 7.5 feet can provide a limited amount of navigation. Under low flow conditions, even the 7.5-foot depth has not been available at all times.

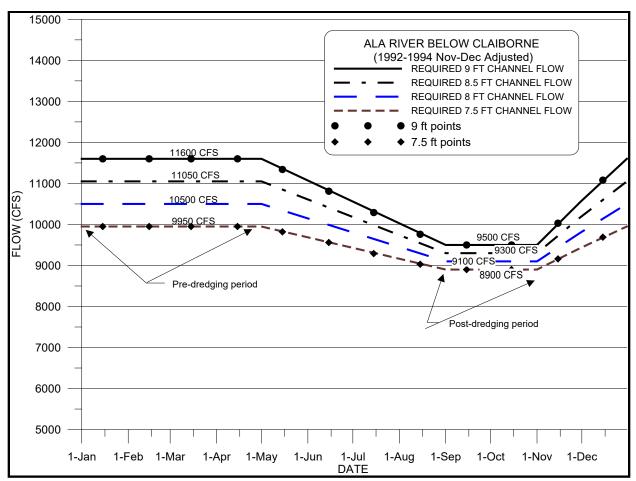
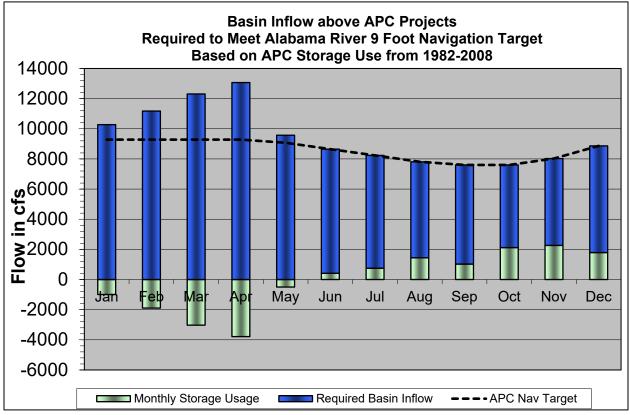
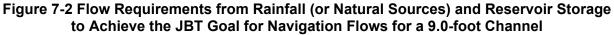


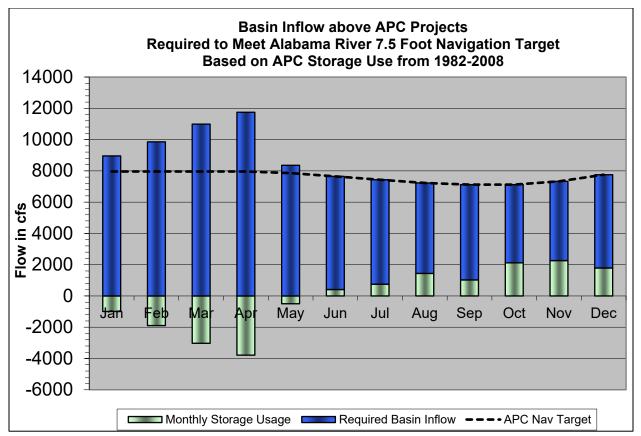
Figure 7-1 Flow-Depth Pattern (Navigation Template) Using 2004–2010 Survey Data

Flow releases from upstream APC projects have a direct influence on flows needed to support navigation depths on the lower Alabama River. Flows for navigation are most needed in the unregulated part of the lower Alabama River below Claiborne Lock and Dam. When flows are available, R. F. Henry, Millers Ferry, and Claiborne Projects are regulated to maintain stable pool levels, coupled with the necessary channel maintenance dredging, to support sustained use of the authorized navigation channel and to provide the full navigation depth of 9.0 feet. When river conditions or funding available for dredging of the river indicates that project conditions (9.0-foot channel) will probably not be attainable in the low water season, the three Alabama River projects are operated to provide flows for a reduced project channel depth as determined by surveys of the river. APC operates its reservoirs on the Coosa and Tallapoosa Rivers (specifically flows from their Jordan, Bouldin, and Thurlow (JBT) projects) to provide a minimum navigation flow target in the Alabama River at Montgomery, Alabama. The monthly minimum navigation flow targets are shown in Table 7-1. However, flows may be reduced if conditions warrant. Additional intervening flow or drawdown discharge from the R. F. Henry and Millers Ferry Projects must be used to provide a usable depth for navigation and/or meet the 7Q10 flow of 6,600 cfs below Claiborne Dam. However, the limited storage afforded in both the R. E. "Bob" Woodruff and William "Bill" Dannelly Lakes can only help meet the 6,600 cfs level at Claiborne Lake for a short period. As local inflows diminish or the storage is exhausted, a lesser amount would be released depending on the amount of local inflows. Table 7-2 and Figure 7-2 show the required basin inflow for a 9.0-foot channel. Table 7-3 and Figure 7-3 show the required basin inflow for a 7.5-foot channel.

Month	9.0-ft Target Below Claiborne Lake (from Navigation Template) (cfs)	9.0-ft Jordan, Bouldin, Thurlow Goal (cfs)	7.5-ft Target Below Claiborne Lake (from Navigation Template) (cfs)	7.5-ft Jordan, Bouldin, Thurlow Goal (cfs)
January	11,600	9,280	9,950	7,960
February	11,600	9,280	9,950	7,960
March	11,600	9,280	9,950	7,960
April	11,600	9,280	9,950	7,960
May	11,340	9,072	9.820	7,856
June	10,810	8,648	9,560	7,648
July	10,290	8,232	9,290	7,432
August	9,760	7,808	9,030	7,224
September	9,500	7,600	8,900	7,120
October	9,500	7,600	8,900	7,120
November	10,030	8,024	9,160	7,328
December	11,080	8,864	9,690	7,752


Table 7-1 Monthly Navigation Flow Target in cfs


Table 7-2 Basin Inflow Above APC Projects Required to Meet A 9.0-foot NavigationChannel


Month	APC Navigation Target (cfs)	Monthly Historical Storage Usage (cfs)	Required Basin Inflow (cfs)			
January	9,280	-994	10,274			
February	9,280	-1,894	11,174			
March	9,280	-3,028	12,308			
April	9,280	-3,786	13,066			
May	9,072	-499	9,571			
June	8,648	412	8,236			
July	8,232	749	7,483			
August	7,808	1,441	6,367			
September	7,600	1,025	6,575			
October	7,600	2,118	5,482			
November	8,024	2,263	5,761			
December	8,864	1,789	7,075			

Month	APC Navigation Target (cfs)	Monthly Historical Storage Usage (cfs)	Required Basin Inflow (cfs)		
January	7,960	-994	8,954		
February	7,960	-1,894	9,854		
March	7,960	-3,028	10,988		
April	7,960	-3,786	11,746		
May	7,856	-499	8,355		
June	7,648	412	7,236		
July	7,432	749	6,683		
August	7,224	1,441	5,783		
September	7,120	1,025	6,095		
October	7,120	2,118	5,002		
November	7,328	2,263	5,065		
December	7,752	1,789	5,963		

Table 7-3 Basin Inflow Above APC Projects Required to Meet A 7.5-foot NavigationChannel

Figure 7-3 Flow Requirements from Rainfall (or Natural Sources) and Reservoir Storage to Achieve the JBT Goal for Navigation Flows for a 7.5-foot Channel

During low-flow periods, it is not always possible to provide the authorized 9.0-foot deep by 200-foot-wide channel dimensions. In recent years, funding for dredging has been reduced resulting in higher flows being required to provide the design navigation depth. In addition, recent droughts in 2000 and 2007 had a severe impact on the availability of navigation depths in the Alabama River.

Historically, navigation has been supported by releases from storage in the ACT Basin. Therefore, another critical component in the water control plan for navigation involves using an amount of storage from APC storage projects similar to that which has historically been used, but in a more efficient manner.

The ACT Basin navigation regulation plan is based on storage and flow/stage/channel depth analyses using basin inflows and average storage usage by APC (e.g., navigation operations would not be predicated on use of additional storage) during normal hydrologic conditions. Under that concept, the Corps and APC make releases that support navigation when basin inflows meet or exceed seasonal targets for either the 9.0-foot or 7.5-foot channel templates. Triggers are also identified (e.g., when basin inflow are less than required natural flows) to change operational goals between the 9.0-foot and 7.5-foot channels. Similarly, basin inflow triggers are identified when releases for navigation are suspended and only 4,640 cfs releases would occur. During drought operations, releases to support navigation are suspended until system recovery occurs as defined in the ACT Basin Drought Contingency Plan (see Exhibit D).

During normal flow periods, no special water control procedures are required for navigation at the R. F. Henry Project other than maintaining the proper pool level. The normal maximum allowable drawdown at elevation 123.0 feet NGVD29 provides a clearance of 13.0 feet over the upper lock sill and should provide minimum depths for a 9-foot navigation channel at Montgomery and up to Bouldin Dam. Navigable depth is normally available downstream of the project if Millers Ferry is within its normal operating level. However, shoaling between Selma, Alabama, and R. F. Henry may result in the need to make water releases to increase the depth over any shoals. This will be accomplished by regular or specially scheduled hydropower releases when possible.

During high flow periods, navigation will be discontinued through the R. F. Henry Lock during flood periods when the headwater reaches elevation 131.0 feet NGVD29. At this elevation the discharge will be 156,000 cfs which is expected to occur on an average of once every three years and the freeboard will be one-foot on the guide and lock walls.

In the event that the Mobile District Water Management Section (EN-HW) determines upcoming reductions in water releases may impact the available navigation channel depth, they shall contact the Black Warrior/Tombigbee - Alabama/Coosa Project Office (OP-BA), and the Mobile District Navigation Section (OP-TN), to coordinate the impact. EN-HW shall provide the Claiborne tailwater gage forecast to OP-BA and OP-TN. Using this forecast and the latest available project channel surveys, OP-BA and OP-TN will evaluate the potential impact to available navigation depths. Should this evaluation determine that the available channel depth is adversely impacted, OP-BA and OP-TN will work together, providing EN-HW with their determination of the controlling depth. Thereafter, OP-BA and OP-TN will coordinate the issuance of a navigation bulletin. The notices will be issued as expeditiously as possible to give barge owners, and other waterway users, sufficient time to make arrangements to light load or remove their vessels before action is taken at upstream projects to reduce flows. The bulletin will be posted to the Mobile District Navigation website at:

https://www.sam.usace.army.mil/Missions/Civil-Works/Navigation/Navigation-Notices/

Although special releases will not be standard practice, they could occur for a short duration to assist maintenance dredging and commercial navigation for special shipments if basin hydrologic conditions are adequate. The Corps will evaluate such requests on a case by case basis, subject to applicable laws and regulations and the basin conditions.

7-12. Drought Contingency Plan. Flow in the Alabama River is largely controlled by APC impoundments on the Coosa and Tallapoosa Rivers above R. F. Henry Lock and Dam. Under normal flows the APC impoundments will provide sufficient releases from the Coosa and Tallapoosa Rivers to meet a continuous minimum seven-day average flow of 4,640 cfs (32,480 cfs/seven days). However, additional intervening flow or drawdown discharge from R. F. Henry and Millers Ferry Projects must be used to provide a usable depth for navigation or meet the 7Q10 flow of 6,600 cfs at Claiborne Lock and Dam.

In accordance with ER 1110-2-1941, Drought Contingency Plans, dated 02 February 2018, an ACT Basin Drought Contingency Plan (DCP) has been developed to implement water control regulation drought management actions. Drought operations will be in compliance with the plan for the entire ACT Basin as outlined in Exhibit D. Pertinent requirements of the DCP relative to the R. F. Henry Project are summarized below.

Based upon experience gained during previous droughts, and in particular the 2006–2008 drought, a basin-wide DCP was developed and is comprised of three components – headwater operations at Allatoona Lake and Carters Lake in Georgia; operations at APC projects on the

Coosa and Tallapoosa Rivers; and downstream operations at Corps projects below Montgomery, Alabama. Drought operations for the APC projects were initially developed as a separate plan by the APC (APCDOP) in cooperation with the State of Alabama and the Corps as a result of the 2006–2008 drought. The specifics of the APCDOP, as incorporated into the overall ACT Basin DCP, are shown on Table 7-5.

Operational guidelines have been developed on the basis of a Drought Intensity Level (DIL). The DIL is a drought indicator, ranging from DIL 1 to DIL 3, determined by the combined number of drought triggers that occur. The three drought triggers are (1) basin inflow, (2) composite conservation storage in APC reservoirs, and (3) state line flow. Additional information on the drought triggers can be found in Exhibit D. Drought management actions would become increasingly more austere when two triggers occur (DIL 2) or all three occur (DIL 3). Table 7-4 lists the three drought operation intensity levels applicable to APC projects.

	-	•			
Drought Intensity Level (DIL)	Drought Level	No. of Triggers Occurring			
DIL 1	Moderate Drought	1			
DIL 2	Severe Drought	2			
DIL 3	Exceptional Drought	3			

Table 7-4 ACT Basin Drought Intensity Levels

Drought management measures for ACT Basin-wide drought regulation consists of three major components:

- Headwater regulation at Allatoona Lake and Carters Lake in Georgia
- Regulation at APC projects on the Coosa and Tallapoosa Rivers
- Regulation at Corps projects downstream of Montgomery on the Alabama River

The headwater regulation component, as described in water control manuals for Allatoona and Carters Projects (Appendices A and H), includes water control actions in accordance with established action zones, minimum releases, and hydropower generation releases. Regulation of APC projects will be in accordance with Table 7-5 in which the drought response will be triggered by one or more of three indicators – state line flows, basin inflow, or composite conservation storage. Corps operation of its Alabama River projects downstream of Montgomery, Alabama, will respond to drought operations of the APC projects upstream.

No storage is provided in the R. E. "Bob" Woodruff pool for regulating releases during periods of low inflow. When drought conditions determine that a change in the operating guidelines is necessary private industries, state agencies and federal agencies with interests in the river system will be notified. Normally the agencies will be advised of any impending reductions well in advance, and their comment will be requested regarding any adverse impacts on the respective agency or industry.

	Jan	Feb	Mar	Apr	May	J	un	Jul	Aug	Sep	Oct	Nov	Dec	
IJ	Normal Operations													
Drought Level tesponse ⁱ	DIL 1: Low Basin Inflows or Low Composite or Low State Line Flow													
rought Level sponse		DIL 2: DIL 1 criteria + (Low Basin Inflows or Low Composite or Low State Line Flow)												
Drought Level Response ^a		DIL 3: Low Basin Inflows + Low Composite + Low State Line Flow												
	Normal	Operation: 2	2,000 cfs	4,000	(8,000)	4,000	- 2,000		1	lormal Oper	ration: 2,000	ation: 2,000 cfs		
er Flow ^b	Jordan 2,000 +/-cfs				4,000 +/- cfs		6/15 Linear Ramp down	Jordan 2,000 +/-cfs		Jordan 2,000 +/-cfs				
Coosa River Flow ^b	Jordan	1,600 to 2,0	100 +/-cfs		2,500 +/- cfs	6/15 Linear Ramp down			-cfs	Jordan 1,600 to 2,000 +/-cfs				
	Joi	rdan 1,600 +	·/-cfs	J	ordan 1,600 t	n 1,600 to 2,000 +/-cfs Jordan 2,000 +/-cfs			-cfs			Jordan 1,600 +/-cfs		
er		Normal Operations: 1200 cfs												
Tallapoosa River Flow ^c	Greater of 1/2 Yates Inflow or 2 x Heflin Gage (Thurlow releases > 350 cfs)				1/2 Yates Inflow				1/2 Yates Inflow		low			
apoosa l Flow ^c		Thurlov	w 350 cfs				1/2 Yates Inflow				Thurlow 350 cfs			
										cfs at Montgomery w release 350 cfs)				
	Normal Operation: Navigation or 4,640 cfs flow													
'er			(mun		/	mal Operatio	on: Navigatio	n or 4,640 cfs	s flow					
River d	4,20	0 cfs (10% 0	Cut) - Montgo	omery	/	mal Operatio	on: Navigatio 4,640 cfs - I		s flow		+	ıce: Full – 4		
ama River Flow ^d	4,20	,	X		/	mal Operatio	4,640 cfs - I				Reduce	ice: Full – 4 : 4,200 cfs-> omery (1 we	> 3,700 cfs	
Alabama River Flow ^d	4,20	3,700 cfs (2,00	Cut) - Montgo		Norr	nal Operatio 3,700 cfs Montgomery	4,640 cfs - I 4,200 cfs (Montgomery	ontgomery	lontgomery	Reduce Montg Reduce	: 4,200 cfs->	> 3,700 cfs eek ramp) > 2,000 cfs	
Alabama River Flow ^d Dn	4,20	3,700 cfs (2,00	Cut) - Montgo (20% Cut) - N 00 cfs gomery	Iontgomery	Norr	3,700 cfs Montgomery	4,640 cfs - 1 4,200 cfs (1	Montgomery 10% Cut) - M	ontgomery 0% Cut) - N		Reduce Montg Reduce Montgo	: 4,200 cfs-> omery (1 we : 4,200 cfs -	> 3,700 cfs eek ramp) > 2,000 cfs	
	4,20	3,700 cfs (2,00	Cut) - Montgo (20% Cut) - N 00 cfs gomery	Iontgomery	Norr	3,700 cfs Montgomery ns follow Gu ations: As Ne	4,640 cfs - 1 4,200 cfs (, , , , , , , , , , , , , , , , , , ,	Montgomery 10% Cut) - M 4,200 cfs (1 s prescribed C Deviation fo	ontgomery 0% Cut) - N in License (r Lake Mart	Measured in	Reduce Montg Reduce Montgo	: 4,200 cfs-> omery (1 we : 4,200 cfs -	> 3,700 cfs eek ramp) > 2,000 cfs	
Guide Alabama River Curve Flow ^d Elevation	4,20	3,700 cfs (2,00	Cut) - Montgo (20% Cut) - N 00 cfs gomery	Iontgomery	Norr Norr I I I I I I I I I I I I I I I I I I	3,700 cfs Montgomery ns follow Gu ttions: As Ne ttions: As Ne	4,640 cfs - 1 4,200 cfs (, , , , , , , , , , , , , , , , , , ,	Montgomery 10% Cut) - M 4,200 cfs (1 s prescribed	ontgomery 0% Cut) - N in License (r Lake Mart r Lake Mart	Measured ir in in	Reduce Montg Reduce Montgo	: 4,200 cfs-> omery (1 we : 4,200 cfs -	> 3,700 cfs eek ramp) > 2,000 cfs	

Table 7-5 ACT Basin Drought Management Matrix

a. Note these are base flows that will be exceeded when possible.

b .Jordan flows are based on a continuous +/- 5% of target flow.

c. Thurlow flows are based on continuous +/- 5% of target flow: flows are reset on noon each Tuesday based on the prior day's daily average at Heflin or Yates.

d. Alabama River flows are 7-Day Average Flow.

7-13. Flood Emergency Action Plans. The Corps is responsible for developing Flood Emergency Action Plans for the ACT System. The plans are included in the Operations and Maintenance Manuals for each system project. Example data available include emergency contact information and flood inundation information.

7-14. Other.

<u>a. Passing Drift.</u> In order to pass drift through the gated spillway, it may be necessary to occasionally raise the trash gate located within Gate 1. The time to raise the trash gate to pass the drift should be as short duration as practical to prevent unnecessary scouring of the channel below the spillway. Normal tailwater elevation of 80.0 feet NGVD29 is adequate for short duration passage of debris. At tailwater elevations 103 feet NGVD29 or higher, no time restrictions are necessary. The operation of the trash gate is under the direction of the Powerhouse Operator, who then logs the release in SCADA to estimate the flow adjustments. A discharge-rating curve for the trash gate is shown on Plate 7-12.

7-15. Deviation from Normal Regulation. The District Commander is occasionally requested to deviate from normal regulation. Prior approval for a deviation is required from the Division Engineer except as noted in subparagraph a below.

Deviation requests usually fall into the following categories:

<u>a. Emergencies.</u> Examples of some emergencies that can be expected to occur at a project are drowning and other accidents, failure of the operation facilities, chemical spills, treatment plant failures, and other temporary pollution problems. Water control actions necessary to abate the problem are taken immediately unless such action would create equal or worse conditions. The Mobile District will notify the SAD office as soon as practicable.

b. Declared System Emergency. A Declared System Emergency can occur when there is a sudden loss of power within the electrical grid and there is an immediate need of additional power generation capability to meet the load on the system. In the Mobile District, a system emergency can be declared by the Southern Company or the Southeastern Power Administration's Operation Center. Once a system emergency has been declared, the requester will contact the project operator and request generation support. The project operator will then lend immediate assistance within the projects operating capabilities. Once support has been given, the project operator should inform the Mobile District Office immediately. The responsibilities and procedures for a Declared System Emergency are discussed in more detail in Division Regulation Number 1130-13-1, Hydropower Operations and Maintenance Policies. It is the responsibility of the District Hydropower Section and the Water Management Section to notify SAD Operations Branch of the declared emergency. The Division Operations Branch should then coordinate with SEPA, District Water Management, and the District Hydropower section on any further actions needed to meet the needs of the declared emergency.

c. Unplanned Deviations. Unplanned instances can create a temporary need for deviations from the normal regulation plan. Unplanned deviations may be classified as either major or minor but do not fall into the category of emergency deviations. Construction accounts for many of the minor deviations and typical examples include utility stream crossings, bridge work, and major construction contracts. Minor deviations can also be necessary to carry out maintenance and inspection of facilities. The possibility of the need for a major deviation mostly occurs during extreme flood events. Requests for changes in release rates generally involve periods ranging from a few hours to a few days, with each request being analyzed on its own merits. In evaluating the proposed deviation, consideration must be given to impacts on project and system purposes, upstream watershed conditions, potential flood threat, project condition, and

alternative measures that can be taken. Approval for unplanned deviations, either major or minor, will be obtained from the Division Office by telephone or electronic mail prior to implementation.

<u>d. Planned Deviations.</u> Each condition should be analyzed on its merits. Sufficient data on flood potential, lake and watershed conditions, possible alternative measures, benefits to be expected, and probable effects on other authorized and useful purposes, together with the district recommendation, will be presented by letter or electronic mail to SAD for review and approval.

7-16. Rate of Release Change. There are no restrictions on releases from the R. F. Henry Project during normal operations. During high-flows, it is desirable to uniformly lower discharge downstream as allowable by conditions and equipment to lessen the impacts of the erosive nature of high flows.

Intentionally left blank.

8 - EFFECT OF WATER CONTROL PLAN

8-01. General. R. F. Henry Lock and Dam is a run-of-the-river project with little storage capacity between the maximum and minimum operating pool elevations of 126.0 feet NGVD29 and 123.0 feet NGVD29. The project has a limited peaking hydropower capacity between elevations 123.0 feet NGVD29 to 126.0 feet NGVD29. The project's minimum reservoir level, elevation 123.0 feet NGVD29, provides navigation depths up to Montgomery, Alabama. Other purposes provided by the project include water quality, public recreation, and fish and wildlife conservation and mitigation. While access and some facilities are available at the project for public recreation and fish and wildlife conservation and mitigation, water is typically not specifically managed for these purposes.

The impacts of the ACT Master Water Control Manual and its Appendices, including this water control manual have been fully evaluated in a Feasibility Report and Integrated Supplemental Environmental Impact Statement (FR/SEIS) that was published in November 2020. A Record of Decision (ROD) for the action was signed in August 2021. During the preparation of the FR/SEIS, a review of all direct, secondary and cumulative impacts was made. As detailed in the FR/SEIS, the decision to prepare the Water Control Manual and the potential impacts was coordinated with Federal and State agencies, environmental organizations, Indian tribes, and other stakeholder groups and individuals having an interest in the basin. The ROD and FR/SEIS are public documents and references to their accessible locations are available upon request.

8-02. Flood Risk Management. R. F. Henry Lock and Dam Project does not contain reservoir flood risk management storage; therefore, the project has no flood risk management capabilities.

<u>a. Spillway Design Flood.</u> The duration of the spillway design flood is approximately 24 days with a peak inflow of 738,000 cfs. Peak outflow is 725,500 cfs. The peak elevation is 148 feet NGVD29. The effects of the spillway design flood are shown on Plate 8-1.

<u>b. Standard Project Flood.</u> The standard project flood would cause a peak pool elevation of 142.3 feet NGVD29 and a maximum discharge of 410,500 cfs. Peak inflow is 421,000 cfs. The effects of the standard project flood are shown on Plate 8-2.

<u>c. Historic Floods.</u> The impacts of the project on hydrographs for the flood of March 1990 and for the flood of record, February 1961, are shown on Plates 8-3 and 8-4.

8-03. Recreation. The R. F. Henry Lock and Dam Project is an important part of the Alabama River Lakes (ARL) recreational resource, providing both economic and social benefits for the region and the Nation. The ARL is composed of the Claiborne, Millers Ferry, and R. F. Henry Projects. The ARL contains 35,632 acres of water plus an additional 12,788 acres of land, most of which are available for public use. Pool elevations of 125 feet NGVD29 at R. F. Henry, 80 feet NGVD29 at Millers Ferry, and 35 feet NGVD29 at Claiborne were used to determine total acres of water. A wide variety of recreational opportunities are provided at the lake including boating, fishing, camping, picnicking, water skiing, and sightseeing. Mobile District park rangers and other project personnel conduct numerous environmental and historical education tours and presentations, as well as water safety instructional sessions each year for the benefit of area students and project visitors. The ARL receives more than 3,400,000 recreational visitors per year. The local and regional economic benefits of recreation are significant. Annual recreational visitor spending within 30 miles of the project totals \$88 million.

8-04. Water Quality. All the ACT Basin projects operate to meet the objective of maintaining water quality. The R. F Henry Project operates essentially as a run-of-the-river project providing a continual discharge of the inflows downstream. These discharges are used downstream to help provide the 7Q10 flow of 6,600 cfs downstream of Claiborne Lock and Dam. Several industries on the Alabama River have designed effluent discharges on the basis of that dilution flow. Whenever flows recede to that level, conditions are closely monitored so that adequate warning can be given if it is necessary to reduce the flows even further in response to extremely dry conditions. Aside from the minimum flow target downstream of Claiborne Lock and Dam, no other water management activities occur to specifically address water quality objectives.

8-05. Fish and Wildlife. The relatively stable pool at R. F. Henry Lock and Dam is beneficial to certain species of fish and wildlife. However, the project also creates a physical barrier to fish and other aquatic organisms' passage. The reservoir is relatively deep and slow moving compared to pre-impounded conditions. This results in a change in physical conditions, such as velocities, temperature, and substrate, as well as feeding and spawning habitat that cannot be tolerated by many species. The dam and reservoir along with other Corps and APC dams and reservoirs in the basin have resulted in declines in many fish and mussel populations. The described lockages in the Claiborne and Millers Ferry Appendices for fish passage are being implemented in order to provide improved opportunities for migration for many species.

8-06. Water Conservation/Water Supply. There are no water storage contracts in place at the R. F. Henry Project. However, based on information provided by the Alabama Office of Water Resource in 2010, there are two major withdrawals that occur from R. E. "Bob" Woodruff Lake: International Paper at Prattville, and the E. B. Harris Southern Company Plant. There are also two minor irrigation withdrawals from the lake by Benton Farms and River Bend Sod. Also, the International Paper (Riverdale Mill) located below the R. F. Henry Project requests a minimum average of six hours of operation from R. F. Henry.

The regulation and permitting of surface water withdrawals for municipal and industrial (M&I) use is a state responsibility. No M&I water supply releases are made from R. F. Henry Dam specifically for downstream M&I water supply purposes. However, water released from R. F. Henry Dam for its authorized project purposes, particularly during dry periods, help to ensure a reasonably stable and reliable water flow in the river to the benefit of downstream water supply users.

8-07. Hydroelectric Power. The R. F. Henry Hydropower Project, along with 22 other hydropower dams in the southeastern United States, composes the SEPA service area. SEPA sells hydroelectric power generated by Corps plants to a number of cooperatives and municipal power providers, referred to as preference customers. Hydroelectric power is one of the cheaper forms of electrical energy, and it can be generated and supplied quickly as needed in response to changing demand.

Hydropower is produced as peak energy at R. F. Henry, i.e., power is generated during the hours that the demand for electrical power is highest, causing significant variations in downstream flows. Daily hydropower releases from the dam vary from zero during off-peak periods to as much as 35,000 cfs, which is turbine capacity. Often, the weekend releases are lower than those during the weekdays. The R. F. Henry Project has a limited peaking hydropower capacity between elevations 123.0 feet NGVD29 to 126.0 feet NGVD29. The projects with hydropower capability provide three principal power generation benefits:

1. Hydropower helps to ensure the reliability of the electrical power system in the SEPA service area by providing dependable capacity to meet annual peak power demands. For most

plants, that condition occurs when the reservoir is at its maximum elevation. Dependable capacity at hydropower plants reduces the need for additional coal, gas, oil, or nuclear generating capacity.

2. Hydropower projects provide a substantial amount of energy at a small cost relative to thermal electric generating stations, reducing the overall cost of electricity. Hydropower facilities reduce the burning of fossil fuels, thereby reducing air pollution. Between 2012 and 2020, R. F. Henry Project produced an average of 287,795 megawatt hours per fiscal year, with a minimum of 254,257 and a maximum of 366,836 MWH, dependent upon water availability.

3. Hydropower has several valuable operating characteristics that improve the reliability and efficiency of the electric power supply system, including efficient peaking, a rapid rate of unit unloading, and rapid power availability for emergencies on the power grid.

Hydropower generation by the R. F. Henry Dam hydropower plant, in combination with the other hydropower power projects in the ACT Basin, helps to provide direct benefits to a large segment of the basin's population in the form of relatively low-cost power and the annual return of revenues to the Treasury of the United States. Hydropower plays an important role in meeting the electrical power demands of the region.

8-08. Navigation. The Alabama River from Montgomery, Alabama, downstream to the Mobile, Alabama area provides a navigation route for commercial barge traffic, serving as a regional economic resource. A minimum flow is required to ensure usable water depths to support navigation. Congress has authorized continuous navigation on the river when sufficient water is available. There are three locks and dams on the Alabama River, and a combination of dredging, river training works, and flow augmentation from upstream storage projects, which together support navigation depths on the river.

The Alabama River is a terminus on the inland waterway system. It is accessed by the Black Warrior Tombigbee Waterway and Mobile Harbor and the Gulf Intracoastal Waterway (GIWW). Its major value as a water transportation resource is its ability to carry traffic to and from inland waterway points in Mississippi, Louisiana, and Texas. Traffic on the Alabama River is linked to resources originating along the river, which makes barge transportation essential and convenient for moving these resources.

Because of river bends and shoaling at the bends, typical tow size is a four-barge tow, except during very low water conditions when tow sizes can be reduced to two barges.

Flows for navigation are most needed in the unregulated part of the lower Alabama River below Claiborne Lock and Dam. When flows are available, Claiborne Lock and Dam is operated to provide the full navigation depth of nine feet. When river conditions or funding available for dredging of the river indicates that project conditions (9.0-foot channel) will probably not be attainable in the low water season, the dam is operated to provide flows for a reduced project channel depth as determined by surveys of the river. In recent years funding for dredging has been cut resulting in higher flows or minimized channel (150 feet wide) being required to provide the design navigation depth. In addition to annual seasonal low flow impacts, droughts have a severe impact on the availability of navigation depths in the Alabama River.

A 9.0-foot deep by 200-foot-wide navigation channel is authorized on the Alabama River to Montgomery, Alabama. A minimum depth of 7.5 feet can provide a limited amount of navigation. Under low-flow conditions, even the 7.5-foot depth has not been available at all times. Over the period from 1976 to 1993, based upon river stage, the 7.5-foot navigation

channel was available 79 percent of the time and the 9.0-foot navigation channel was available 72 percent of the time. Since 1993, the percentage of time that these depths have been available has declined further. Full navigation channel availability on the Alabama River is dependent upon seasonal flow conditions and channel maintenance. The ACT Basin water control plan will provide a 9.0-foot channel, based upon river stage, approximately 90 percent of the time in January and over 50 percent of the time in September. A 7.5-foot channel, based upon river stage, is expected approximately 90 percent of the time in January and 56 percent of the time in September. Because of higher flows in the winter and spring, channel availability is much higher from December through May.

Figure 8-1 depicts the historical annual channel depth availabilities for the Alabama River below Claiborne Lock and Dam, based upon river stage, computed for 1970–2010.

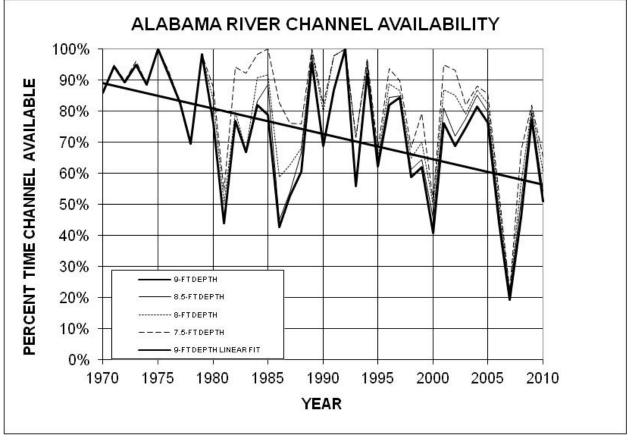


Figure 8-1 Alabama River Channel Availability below Claiborne, 1970 to 2010

Extreme high-flow conditions also limit availability of the project for commercial navigation, principally related to the ability to use the navigation locks at the three locks and dams on the Alabama River. Those conditions are temporary and far more short-term (usually lasting no more than a few days) than low-water limitations resulting from extended periods of drought and low basin inflows. At R. F. Henry Lock and Dam, use of the navigation lock is discontinued when the headwater above the dam reaches elevation 131.0 feet NGVD29. That elevation equates to a flow of about 156,000 cfs, which occurs on average about once every three years. At Millers Ferry Lock and Dam, use of the navigation lock is discontinued when the tailwater below the dam reaches elevation 81.0 feet NGVD29. That tailwater elevation equates to a flow

of about 220,000 cfs, which occurs on average about once every 18 years. At Claiborne Lake, use of the navigation lock is temporarily discontinued when the tailwater below the dam reaches elevation 47.0 feet NGVD29. That tailwater elevation equates to a flow of about 130,000 cfs, which occurs on average about once every 1.8 years. Table 8-1 shows the navigation activity at R. F. Henry Lock.

Lockages/vessels (number)	CY2020	CY2019	CY2018	CY2017	CY2016	CY2015	CY2014	CY2013	CY2012
Barges Empty									1
Barges Loaded									1
Commercial Lockages									2
Commercial Vessels									2
Non-Commercial Lockages		2		4	2	2	4	2	1
Non-Commercial Vessels		2		4	2	2	4	2	1
Recreational Lockages	19	22	41	23	36	55	31	106	95
Recreational Vessels	31	31	55	30	44	139	60	128	130
Total Lockages	19	24	41	27	38	57	35	108	98
Total Vessels	31	33	55	34	46	141	64	130	133
Commodities (tons)									
Crude Material Except Fuels (tons)									
Equipment and Machinery (tons)									10
Total, All Commodities (tons)									10

 Table 8-1 Navigation Activity at R. F. Henry Lock and Dam

Source: USACE, Institute for Water Resources, Waterborne Commerce Statistics Center

8-09. Drought Contingency Plans. The development of drought plans has become increasingly important as more demands are placed on the water resources of the basin. During low-flow conditions, the system may not be able to fully support all project purposes. The purpose of drought planning is to minimize the effect of drought, to develop methods for identifying drought conditions, and to develop both long- and short-term measures to be used to respond to and mitigate the effects of drought conditions. Response to drought conditions involves all the Corps and APC projects in the basin. Certain flow rates into the Alabama River are prescribed in the water control plan on the basis of available storage in the reservoirs, and other factors. The plan is described in Section 7 of this appendix.

8-10. Flood Emergency Action Plans. Because the R. F. Henry Dam is not a flood risk management project, no major actions occur that are related to flood risk management. However, flowage easements have been obtained encompassing all lands subjected to an increased frequency of flooding from operation of the project. Normally, all operations are directed by the Mobile District Office. If a storm of flood-producing magnitude event occurs and all communications are disrupted between the district office and project personnel at the R. F. Henry Lock and Dam, emergency operating procedures, as previously described in Section 7 of this appendix, will begin. If communication is broken after some instructions have been received from the district office, those instructions will be followed for as long as they are applicable.

8-11. Frequencies. The annual peak flow frequency curve at the R. F. Henry Project is plotted on Plate 8-5. The headwater and tailwater stage frequency curve is shown on Plate 8-6.

9 - WATER CONTROL MANAGEMENT

9-01. Responsibilities and Organization. The R. F. Henry Project is a Federal structure operated by the Corps. It is part of the Alabama River Navigation System. Many agencies in Federal and State governments are responsible for developing and monitoring water resources in the R. F. Henry Basin. Some of the Federal agencies are the Corps, U.S. Environmental Protection Agency, National Parks Service, U.S. Coast Guard, USGS, U.S. Department of Energy, U.S. Department of Agriculture, U.S. Fish and Wildlife (USFWS), and NOAA. In addition to the Federal agencies, the State of Alabama is involved through the Alabama Department of Environmental Management, Alabama Office of Water Resources.

a. USACE. Authority for water control regulation of the R. F. Henry Project has been delegated to the SAD Commander. The responsibility for water control regulation activities has been entrusted to the Mobile District, Engineering Division, Water Management Section. Water control actions for R. F. Henry are regulated to meet the federally authorized project purposes in coordination with federally authorized ACT Basin-wide system purposes. It is the responsibility of the Water Management Section to develop water control regulation procedures for the R. F. Henry Project, including all foreseeable conditions. The Water Management Section monitors the project for compliance with the approved water control plan. In accordance with the water control plan, the Water Management Section performs water control regulation activities that include determination of project water releases, daily declarations of water availability for hydropower generation and other purposes; daily and weekly reservoir pool elevation and release projections; weekly river basin status reports; tracking basin composite conservation storage and projections; determining and monitoring daily and seven-day basin inflow; managing high-flow operations and regulation: and coordination with other District elements and basin stakeholders. When necessary, the Water Management Section instructs the Project Operator regarding normal water control regulation procedures and emergencies, such as flood events. The project is tended by operators under direct supervision of the Power Project Manager and the R. F. Henry Site Manager. The Water Management Section communicates directly with the Powerhouse Operators at the R. F. Henry Powerhouse and with other project personnel as necessary. The Water Management Section is also responsible for collecting historical project data and disseminating water control information, such as historical data, lake level and flow forecasts, and weekly basin reports within the agency, to other Federal, State, and local agencies and the general public. The Jones Bluff Powerhouse is tended by operators who control both the power generation at Jones Bluff and the spillway gates. They can also remotely control the power generation at Millers Ferry. The Jones Bluff Powerhouse and spillway gates can also be remotely operated from the Millers Ferry Powerhouse. The Millers Ferry spillway gates can only be operated by the lock tender at Millers Ferry. The spillway gates and lock are tended by operators under direct supervision of a lock supervisor who in turn reports to the Project Manager at the Black Warrior Tombigbee/Alabama-Coosa Project Management Office in Tuscaloosa, Alabama. The main mechanism for such data dissemination is the internet through web pages and computer-to-computer data transfers. The web address for water management data is

http://www.sam.usace.army.mil/Missions/CivilWorks/WaterManagement.aspx

b. Other Federal Agencies.

1) NWS. NWS is the Federal agency in NOAA that is responsible for weather and weather forecasts. The NWS along with its River Forecast Center maintains a network of reporting stations throughout the nation. It continuously provides current weather conditions

and forecasts. It prepares river forecasts for many locations including the ACT Basin. Often, it prepares predictions on the basis of what if scenarios. Those include rainfall that is possible but has not occurred. In addition, the NWS provides information on hurricane tracts and other severe weather conditions. It monitors drought conditions and provides the information. Information is available through the Internet, the news, and the Mobile District's direct access.

2) USGS. The USGS is an unbiased, multidisciplinary science organization that focuses on biology, geography, geology, geospatial information, and water. The agency is responsible for the timely, relevant, and impartial study of the landscape, natural resources, and natural hazards. Through the Corps-USGS Cooperative Gaging program, the USGS maintains a comprehensive network of gages in the R. F. Henry Watershed and ACT Basin. The USGS Water Science Centers in Georgia and Alabama publish real-time reservoir levels, river and tributary stages, and flow data through the USGS National Water Information Service (NWIS) website. The Water Management Section uses the USGS to operate and maintain project water level gaging stations at each Federal reservoir to ensure the accuracy of the reported water levels.

3) SEPA. SEPA was created in 1950 by the Secretary of the Interior to carry out the functions assigned to the Secretary by the Flood Control Act of 1944. In 1977, SEPA was transferred to the newly created U.S. Department of Energy. SEPA, headquartered in Elberton, Georgia, is responsible for marketing electric power and energy generated at reservoirs operated by the Corps. The power is marketed to nearly 500 preference customers in Georgia, Florida, Alabama, Mississippi, southern Illinois, Virginia, Tennessee, Kentucky, North Carolina, and South Carolina.

i. SEPA's objectives are to market electricity generated by the Federal reservoir projects, while encouraging its widespread use at the lowest possible cost to consumers. Power rates are formulated using sound financial principles. Preference in the sale of power is given to public bodies and cooperatives, referred to as preference customers. SEPA does not own transmission facilities and must contract with other utilities to provide transmission, or wheeling services, for the Federal power.

ii. SEPA's responsibilities include the negotiation, preparation, execution, and administration of contracts for the sale of electric power; preparation of repayment studies to set wholesale rates; the provision, by construction, contract or otherwise, of transmission and related facilities to interconnect reservoir projects and to serve contractual loads; and activities pertaining to the operation of power facilities to ensure and maintain continuity of electric service to its customer.

iii. SEPA schedules the hourly generation schedules for the R. F. Henry power project at the direction of the Corps on the basis of daily and weekly water volume availability declarations and water release requirements.

4) USFWS. The USFWS is an agency of the Department of the Interior whose mission is working with others to conserve, protect and enhance fish, wildlife, plants, and their habitats for the continuing benefit of the American people. The USFWS is the responsible agency for the protection of federally listed threatened and endangered species and federally designated critical habitat in accordance with the Endangered Species Act of 1973. The USFWS also coordinates with other Federal agencies under the auspices of the Fish and Wildlife Coordination Act. The Corps, Mobile District, with support from the Water Management Section, coordinates water control actions and management with USFWS in accordance with both laws.

c. State, County and Local Agencies.

1) Alabama. The Alabama Office of Water Resources (OWR) administers programs for river basin management, river assessment, water supply assistance, water conservation, flood mapping, the National Flood Insurance Program, and water resources development. Further, OWR serves as the state liaison with Federal agencies on major water resources related projects, conducts any special studies on instream flow needs, and administers environmental education and outreach programs to increase awareness of Alabama's water resources.

i. The ADEM Drinking Water Branch works closely with the more than 700 water systems in Alabama that provide safe drinking water to four million citizens.

ii. The Alabama Chapter of the Soil and Water Conservation Society fosters the science and the art of soil, water, and related natural resource management to achieve sustainability.

d. Stakeholders. Many non-federal stakeholder interest groups are active in the ACT Basin. The groups include lake associations, M&I water users, navigation interests, environmental organizations, and other basin-wide interests groups. Coordinating water management activities with the interest groups, State and Federal agencies, and others is accomplished as required on an ad-hoc basis and on regularly scheduled water management teleconferences that occur during unusual flood or drought conditions to share information regarding water control regulation actions and gather stakeholder feedback. The Master Water Control Manual includes a list of State and Federal agencies and active stakeholders in the ACT Basin that have participated in the ACT Basin water management teleconferences and meetings.

<u>e. APC.</u> The APC owns and operates hydropower projects within the State, and controls most of the storage in the ACT Basin, as shown below in Table 9-1. The R. E. "Bob" Woodruff Lake controls less than 2 percent of the conservation storage in the ACT Basin.

Project	Storage (acre-feet)	Percentage		
Allatoona*	270,247	10.3		
Carters*	141,402	5.4		
Weiss	263,417	10.1		
H. Neely Henry	118,210	4.5		
Logan Martin	141,897	5.4		
Lay	92,352	3.5		
Mitchell	51,577	2.0		
Jordan/Bouldin	19,057	0.7		
Harris	207,318	7.9		
Martin	1,202,340	46.0		
Yates	6,928	0.3		
R. F. Henry (R. E. "Bob" Woodruff)*	36,450	1.4		
Millers Ferry (William "Bill" Dannelly)*	46,704	1.8		

 Table 9-1 ACT Basin Conservation Storage Percent by Acre-Feet

R. F. Henry Project receives outflow from the APC dams, Jordan-Bouldin on the Coosa River and Thurlow on the Tallapoosa River, and schedules operation based on these releases and local or intervening flow. The scheduled outflows from these dams primarily determine the operation of R. F. Henry.

9-02. Interagency Coordination.

<u>a. Local Press and USACE Bulletins.</u> The local press includes any periodic publications in or near the R. F. Henry Watershed and the ACT Basin. The cities of Montgomery, Prattville, Selma, Clanton, and Greenville, Alabama, are all in or near the R. F. Henry watershed and publish local newspapers. The papers often publish articles related to the rivers and streams. Their representatives have direct contact with the Corps through the Public Affairs Office. In addition, they can access the Corps web pages. The Corps and the Mobile District publish e-newsletters regularly which are made available to the general public via email and postings on various websites. Complete, real-time information is available at the Mobile District's Water Management homepage https://www.sam.usace.army.mil/Missions/Civil-Works/Water-Management/. The Mobile District Public Affairs Office issues press releases as necessary to provide the public with information regarding Water Management issues and activities.

<u>b. NWS.</u> Interagency data exchange has been implemented with the SERFC and real-time products generated by NWS offices are provided to the Corps via the network discussed in Section 5-05. Since the NWS has the legal responsibility for issuing flood forecast to the public and for disseminating the information to the public, the Corps relies heavily on these products in their operation of the ACT River system especially during high water events. Data collected by the Corps and information regarding the daily operational activities at Corps projects may be shared with the SERFC to aid in their stage forecast development. The Corps also provides funding for a network of rainfall gages that are maintained by the NWS.

<u>c. UUSGS.</u> The Corps interacts with the USGS through the Corps-USGS Cooperative stream gage program which the Corps provides funding for numerous river stage gages throughout the ACT basin. This involves periodic exchange of stream and rainfall gage data and service calls to the USGS when necessary. The Corps and the USGS meet on an annual basis to review the gage program, to explore opportunities to improve the program, and to address any issues or needs.

<u>d. SEPA.</u> SEPA was created in 1950 by the Secretary of the Interior to carry out the functions assigned to the secretary by the Flood Control Act of 1944. In 1977 SEPA was transferred to the newly created U.S. Department of Energy. SEPA, headquartered in Elberton, Georgia, is responsible for marketing electric power and energy generated at reservoirs operated by the Corps. The power is marketed to nearly 500 preference customers in Georgia, Florida, Alabama, Mississippi, southern Illinois, Virginia, Tennessee, Kentucky, North Carolina, and South Carolina.

1. SEPA's objectives are to market electricity generated by the Federal reservoir projects, while encouraging its widespread use at the lowest possible cost to consumers. Power rates are formulated using sound financial principles. Preference in the sale of power is given to public bodies and cooperatives, referred to as preference customers. SEPA does not own transmission facilities and must contract with other utilities to provide transmission, or wheeling services, for the federal power.

2. SEPA's responsibilities include the negotiation, preparation, execution, and administration of contracts for the sale of electric power; preparation of repayment studies to set wholesale rates; the provision, by construction, contract or otherwise, of transmission and

related facilities to interconnect reservoir projects and to serve contractual loads; and activities pertaining to the operation of power facilities to ensure and maintain continuity of electric service to its customer.

3. SEPA schedules the hourly generation schedules for the R. F. Henry Hydropower Project at the direction of the Corps on the basis of daily and weekly water volume availability declarations and water release requirements.

<u>e. USFWS.</u> The USFWS is an agency of the Department of the Interior whose mission is working with others to conserve, protect and enhance fish, wildlife, plants, and their habitats for the continuing benefit of the American people. The USFWS is the responsible agency for the protection of federally listed threatened and endangered species and federally designated critical habitat in accordance with the Endangered Species Act of 1973. The USFWS also coordinates with other Federal agencies under the auspices of the Fish and Wildlife Coordination Act. The Corps, Mobile District, with support from the Water Management Section, coordinates water control actions and management with USFWS in accordance with both laws.

9-03. Interagency Agreements. Refer to the Master Manual for discussion of interagency agreements for the ACT basin projects.

9-04. Commissions, River Authorities, Compacts, and Committees. Refer to the Master Manual for discussion of these subjects.

9-05. Non-Federal Hydropower. Refer to the Master Manual for discussion of non-federal hydropower in the ACT basin.

9-06. Reports.

a. As early as possible every day (preferably between 4:00 and 6:00 a.m.) and at other times upon request, the Project Operator operating agency shall provide to the Mobile District Water Management Section the Operational Data Requirements. Data shall be distributed via automatic electronic transmittal. The operational data may include midnight pool elevation, 24-hour average inflow and discharge, 4-hour (midnight to 0400) inflow and discharge, 4:00 a.m. pool elevation, gross and estimated generation.

b. An After-Action Report will be generated after each flood event. These reports will be archived, utilized to provide narrative for annual flood damage reports, and made available upon request to SAD.

c. Automated reports are generated daily/weekly/monthly and made available through the Corps server; ACT Basin Daily Report, ACT 10-day Forecast, River Bulletin, ACT-ACT Report Summary, Lake Level 4-Week Forecast and Average Daily Inflow to Lakes by Month.

d. The District River System Status – Weekly summary of activities on the Mobile District river systems is updated weekly and published to the webpage.

e. The hourly power generation schedule is generated and posted to by 4:00 p.m. CT. Available for viewing are tomorrow's schedule, plus the previous five days.

f. Any Corps-requested information, such as monthly charts, short-term hydrologic reports, emergency regulation reports, graphical and tabular summaries, flood situation reports, and any other information requested by the Corps, shall be provided in a timely manner.

9-07. Framework for Water Management Changes. Special interest groups often request modifications of the basin water control plan or project specific water control plan. The R. F. Henry Project and other ACT Basin projects were constructed to meet specific, authorized purposes, and major changes in the water control plans would require modifying, either the project itself or the purposes for which the projects were built. However, continued increases in the use of water resources demand constant monitoring and evaluating reservoir regulations and reservoir systems to insure their most efficient use. Within the constraints of Congressional authorizations and engineering regulations, the water control plan and operating techniques are often reviewed to see if improvements are possible without violating authorized project functions. When deemed appropriate, temporary deviations to the water control plan approved by SAD can be implemented to provide the most efficient regulation while balancing the multiple purposes of the ACT Basin-wide System.

EXHIBIT A

SUPPLEMENTARY PERTINENT DATA

GENERAL

Other names of project	Jones Bluff
Dam site location	
State	Alabama
Basin	Alabama-Coosa-Tallapoosa
River	Alabama
Miles above mouth of Alabama River	236.30
Total drainage area above dam site	
Square miles	16,233
1 inch of runoff equals - acre-feet	869,333
Type of project	Dam, Reservoir and Power plant
Objectives of regulation	Navigation, Power
Project Owner	United States of America
Operating Agency/ Regulating Agency	U. S. Army Corps of Engineers

STREAM FLOW AT DAM SITE

Period of Total Record	1939-2009
Period of Record (Dam in place)	1975-2009
Average annual flow for period of record (1939-2009) – cfs	24,628
Minimum monthly flow in period of record (1939-2009) - cfs	2,256
Maximum monthly flow in period of record (1939-2009) - cfs	118,061
Minimum daily flow in period of record (1939-2009) - cfs	138
Maximum daily flow in period of record (1939-2009) - cfs	218,355
Peak flow during period of record, (Feb-Mar 1961 flood) - cfs	291,700
Peak stage during period of record, (Feb-Mar 1961 flood) – ft NGVD29	138.6

REGULATED FLOODS

Maximum flood of project record (Mar. 1990)	
Peak inflow - cfs	279,044
Peak outflow - cfs	220,000
Peak pool elevation – feet NGVD29	136.8

REGULATED FLOODS (CONT'D)

Maximum flood of continuous record (Feb Mar. 1961)	
Peak inflow - cfs	291,700
Regulated peak outflow - cfs	278,500
Regulated peak pool elevation - feet NGVD29	138.6
Standard project flood series	
Peak inflow - cfs	421,000
Regulated peak outflow - cfs	410,500
Regulated peak pool elevation - feet NGVD29	142.3
Spillway design flood series	
Peak inflow - cfs	738,000
Regulated peak outflow - cfs	725,500
Regulated peak pool elevation – feet NGVD29	148.0
RESERVOIR	
Maximum operating pool elevation - feet NGVD29	126.0
Minimum operating pool elevation - feet NGVD29	123.0
Normal operating pool elevation – feet NGVD29	125.0
Total drainage area above R. F. Henry dam site	
Square miles	16,233
1 inch of runoff equals - acre-feet	865,760
Area at pool elevation 126.0 - acres	13,500
Area acquired in fee simple - acres	5,407.2
Area acquired by easement - acres	13,911.78
Area cleared - acres	6,050
Maximum elevation of clearing - feet NGVD29	130.0
Total volume at elevation 126.0 - acre-feet	247,210
Length at elevation 126.0 - miles	81.1
Shoreline distance at elevation 126.0 - miles	397

<u>LOCK</u>

Nominal size of chamber - feet	84 x 600
Distance center to center of gate pintles - feet	655
Maximum lift - feet	47.0
Elevation of upper stop-log sill - feet NGVD29	109.0
Elevation of upper miter sill - feet NGVD29	109.0
Elevation of lower stop-log sill - feet NGVD29	67.0
Elevation of lower miter sill - feet NGVD29	67.0
Elevation of chamber floor - feet NGVD29	66.0
Elevation of top of floor culverts - feet NGVD29	66.0
Elevation of top of upper approach walls - feet NGVD29	132.0
Elevation of top of upper gate blocks - feet NGVD29	143.0
Elevation of top of chamber walls - feet NGVD29	132.0
Elevation of top of lower guide walls - feet NGVD29	132.0
Freeboard on guide walls when lock becomes inoperative - feet	1.0
Percent of time inoperative	0.4
Type of upper gate	horizontally framed miter
Height of upper gate – feet	34
Type of lower gate	horizontally framed miter
Height of lower gate – feet	65
Type of culvert valves	reverse tainter
Dimensions of culverts at valves – feet	10 x 10
Dimensions of culverts at laterals – feet	10 x 15.50
Elevation of culvert ceilings between valves - feet NGVD29	74.0
Minimum submergence of culvert valves - feet	5.0
Type of filling and emptying system	floor culverts
Type of emergency dams	stop logs
Elev. of top of upstream emergency dam (stoplogs) - feet NGVD29	126.7
Elevation of top of downstream emergency dam(stoplogs) - feet NGV	D29 97.9
Type of operating machinery	hydraulic oil pressure

SPILLWAY

Туре	concrete-gravity
Total length, including end piers - feet	646
Net length - feet	550
Elevation of crest – feet NGVD29	91.0
Number of piers, including end piers	12
Width of piers – feet	8
Type of gates	Tainter
Number of gates	11
Length of gates – feet	50
Height of gates – feet	35
Maximum discharge capacity (pool elev. 125.0) - cfs	124,500
Elevation of top of gates in closed position – feet NGVD29	126.0
Elevation of top of gates in open position – feet NGVD29	168.25
Elevation of low steel of gates in fully open position – feet NGVD29	143.6
Elevation of trunnion – feet NGVD29	124.0
Elevation of access bridge – feet NGVD29	158.5
Elevation of stilling basin apron – feet NGVD29	66.0 to 81.0
Length of stilling basin – feet	62 to 72
Height of end sill – feet	5.0

EARTH OVERFLOW DIKES

Right Bank Dike	
Total length – feet	2,661
Top elevation – feet NGVD29	135.0
Top width – feet	32
Side slopes	1 on 8
Thickness of riprap on slopes – inches	24
Thickness of filter blanket – inches	9
Maximum swellhead when dike is overtopped – feet	1.4
Freeboard, top of dike above full upper pool – feet	9

EARTH OVERFLOW DIKES (CONT'D)

Left Bank Dike	
Total length including lock mound – feet	12,639
Top elevation – feet NGVD29	143.0
Top width – feet	32
Side slopes	1 on 2.5
Freeboard, top of dike above full upper pool – feet	17
Freeboard, top of dike above headwater for Standard Project Flood series	– feet 0.7
Recurrence interval of flood which will overtop right bank dike (135 feet NGVD29) using actual peak elevation from 1975- 2009	22
POWER PLANT	
Maximum power pool elevation – feet NGVD29	126.0
Maximum normal drawdown elevation – feet	123.0
Temporary/Emergency drawdown elevation – feet	122.0
Maximum static head – feet	47
Average operating head without spillway discharge – feet	29
Rated net head – feet	28.2
Operating head with one unit at full gate and pool elevation 126.0 feet	42.5
Minimum head for generation – feet	15.3
Length of powerhouse – feet	375
Width of powerhouse including intake structure – feet	160
Type of powerhouse construction	reinforced concrete
Type of intake gates	tractor
Number of intake gates	3/unit
Height of intake gates – feet	30
Width of intake gates – feet	17
Length of unit bay – feet	73
Number of units	4
Type of turbine	fixed blade

POWER PLANT (CONT'D)

Maximum discharge per unit – cfs	8,800
Capacity of each turbine – hp	23,480
Elevation of centerline of distributor – feet NGVD29	96.0
Total installation – kW	82,000
Dependable plant output during critical period – kW	82,000
Generator rating – kVA	20,500
Generator speed – revolutions per minute (rpm)	73.5
Generator, electrical characteristics	3 phase, 60 Hertz 95 p.f.
Elevation of bottom of draft tube – feet NGVD29	39.0
Length of draft tube – feet	87
Type of draft tube gates	vertical slide
Number of draft tube gates	3/unit
Type of draft tube gate operation	positioned by gantry
Elevation of operating deck – feet NGVD29	143.0
Location of switchyard	right bank downstream
Elevation of switchyard and parking area – feet NGVD29	143.0
Transmission voltage – kV	115.0
Number of transformer bays	2
Number of 3-phase type transformers	2
Capacity of each transformer – kVA	44,440
Average annual energy from plant (FY 2000-2012) – million kW-h	284.5

Intentionally left blank.

EXHIBIT B

UNIT CONVERSIONS

AND

VERTICAL DATUM CONVERSION INFORMATION

UNIT	m²	km ²	ha	in²	ft²	yd²	mi²	ac
1 m²	1	10 ⁻⁶	10 ⁻⁴	1550	10.76	1.196	3.86 X 10 ⁻⁷	2.47 X 10 ⁻⁴
1 km²	10 ⁶	1	100	1.55 X 10 ⁹	1.076 X 10 ⁷	1.196 X 10 ⁶	0.3861	247.1
1 ha	10 ⁴	0.01	1	1.55 X 10 ⁷	1.076 X 10 ⁷	1.196 X 10 ⁴	3.86 X 10 ⁻³	2,471
1 in²	6.45 X 10 ⁻⁴	6.45 X 10 ¹⁰	6.45 X 10 ⁻⁸	1	6.94 X 10 ⁻³	7.7 X 10 ⁻⁴	2.49 X 10 ⁻¹⁰	1.57 X 10 ⁷
1 ft ²	.0929	9.29 X 10 ⁻⁸	9.29 X 10 ⁻⁶	144	1	0.111	3.59 X 10⁻ ⁸	2.3 X 10 ⁻⁵
1 yd²	0.8361	8.36 X 10 ⁻⁷	8.36 X 10 ⁻⁵	1296	9	1	3.23 X 10 ⁻⁷	2.07 X 10 ⁻⁴
1 mi²	2.59 X 10 ⁶	2.59	259	4.01 X 10 ⁹	2.79 X 10 ⁷	3.098 X 10 ⁶	1	640
1 ac	4047	0.004047	0.4047	6. 27 X 10 ⁶	43560	4840	1.56 X 10 ⁻³	1

AREA CONVERSION

LENGTH CONVERSION

UNIT	cm	m	km	in.	ft	yd	mi
cm	1	0.01	0.0001	0.3937	0.0328	0.0109	6.21 X 10 ⁻⁶
m	100	1	0.001	39.37	3.281	1.094	6.21 X 10 ⁻⁴
km	10 ⁵	1000	1	39,370	3281	1093.6	0.621
in.	2.54	0.0254	2.54 X 10⁻⁵	1	0.0833	0.0278	1.58 X 10⁻⁵
ft	30.48	0.3048	3.05 X 10 ⁻⁴	12	1	0.33	1.89 X 10 ⁻⁴
yd	91.44	0.9144	9.14 X 10 ⁻⁴	36	3	1	5.68 X 10 ⁻⁴
mi	1.01 X 10⁵	1.61 X 10 ³	1.6093	63,360	5280	1760	1

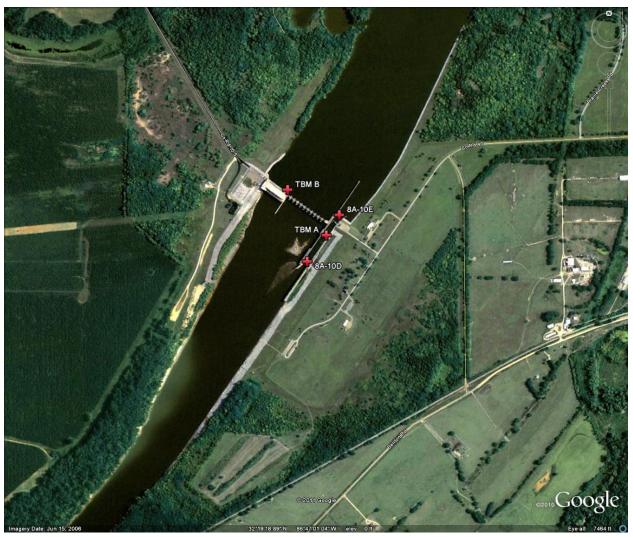
FLOW CONVERSION

UNIT	m³/s	m³/day	l/s	ft³/s	ft³/day	ac-ft/day	gal/min	gal/day	mgd
m³/s	1	86,400	1000	35.31	3.05 X 10 ⁶	70.05	1.58 X 10 ⁴	2.28 X 10 ⁷	22.824
m³/day	1.16 X 10 ⁻⁵	1	0.0116	4.09 X 10 ⁻⁴	35.31	8.1 X 10 ⁻⁴	0.1835	264.17	2.64 X 10 ⁻⁴
l/s	0.001	86.4	1	0.0353	3051.2	0.070	15.85	2.28 X 104	2.28 X 10 ⁻²
ft³/s	0.0283	2446.6	28.32	1	8.64 X 10 ⁴	1.984	448.8	6.46 X 10⁵	0.646
ft ³ /day	3.28 X 10 ⁻⁷	1233.5	3.28 X 10 ⁻⁴	1.16 X 10 ⁻⁵	1	2.3 X 10 ⁻⁵	5.19 X 10 ⁻³	7.48	7.48 X 10 ⁻⁶
ac-ft/day	0.0143	5.451	14.276	0.5042	43,560	1	226.28	3.26 X 10 ⁵	0.3258
gal/min	6.3 X 10 ⁻⁵	0.00379	0.0631	2.23 X 10 ⁻³	192.5	4.42 X 10 ⁻³	1	1440	1.44 X 10 ⁻³
gal/day	4.3 X 10 ⁻⁸	3785	4.38 X 10 ⁻⁴	1.55 X 10 ⁻⁶	11,337	3.07 X 10 ⁻⁶	6.94 X 10 ⁻⁴	1	10 ⁻⁶
mgd	0.0438		43.82	1.55	1.34 X 10⁵	3.07	694	10 ⁶	1

VOLUME CONVERSION

UNIT	liters	m ³	in ³	ft ³	gal	ac-ft	million gal
liters	1	0.001	61.02	0.0353	0.264	8.1 X 10 ⁻⁷	2.64 X 10 ⁻⁷
m ³	1000	1	61,023	35.31	264.17	8.1 X 10 ⁻⁴	2.64 X 10 ⁻⁴
in ³	1.64 X 10 ⁻²	1.64 X 10⁻⁵	1	5.79 X 10 ⁻⁴	4.33 X 10 ⁻³	1.218 X 10 ⁻⁸	4.33 X 10 ⁻⁹
ft ³	28.317	0.02832	1728	1	7.48	2.296 X 10⁻⁵	7.48 X 10 ⁶
gal	3.785	3.78 X 10 ⁻³	231	0.134	1	3.07 X 10 ⁻⁶	10 ⁶
ac-ft	1.23 X 10 ⁶	1233.5	75.3 X 10 ⁶	43,560	3.26 X 10⁵	1	0.3260
million gallons	3.785 X 10 ⁶	3785	2.31 X 10 ⁸	1.34 X 10⁵	10 ⁶	3.0684	1

COMMON CONVERSIONS


- 1 million gallons per day (MGD) = 1.55 cfs 1 day-second-ft (DSF) = 1.984 acre-ft = 1 cfs for 24 hours 1 cubic foot per second of water falling 8.81 feet = 1 horsepower 1 cubic foot per second of water falling 11.0 feet at 80% efficiency = 1 horsepower
- 1 inch of depth over one square mile = 2,323,200 cubic feet
- 1 inch of depth over one square mile = 0.0737 cubic feet per second for one year

Station	NAVD88 Elevation (feet)	NGVD29 Elevation (feet)	Diff NAVD88 NGVD29 (feet)	Remarks
8A-10D	131.965			Set Corps of Engineers Brass Disk (Elevation obtain from OPUS DB)
8A-10E	143.082			Set Corps of Engineers Brass Disk
US Gage	147.041			Shot on upstream gage datum point. Digital readout 125.79, read 25.79 on metal tape. Both readings at 10:52 AM May 26, 2010
DS Gage	146.968			Shot on downstream gage datum point. Digital readout 81.13, read 81.23 on metal tape. Both readings at 9:33 AM May 26, 2010
Disk	143.076	143.014	0.062	USGS - RM 2 bronze tablet between pool and tail gages in transmitter room on floor. Elevation 143.014 feet, mean sea level.
RP1 (tail)	146.723	146.644	0.079	USGS - RP 1 [tail gage] penciled arrow on top of metal cover over pipe well, right of float tape indicator. Elevation 146.644 feet, mean sea level.
RP1 (pool)	146.715	146.651	0.064	USGS - RP 1 [pool gage] penciled arrow on top of metal cover over pipe well, right of float tape indicator. Elevation 146.651 feet, mean sea level.
TBM A	132.943			Chiseled "x" in top of bolt on base of light pole. Light pole is on left lock wall 18.20 feet south of hinges on gate leading to metal stair doing down inside of left lock wall
ТВМ В	159.193			Chiseled "x" in top of bolt of metal handrail base at metal stairs near powerhouse on right side of dam.
TBM C	143.448			Chiseled "x" in base of downstream well pipe in transmitter room of powerhouse.

SURVEY DATASHEET (Version 1.0)

		1				
PID: BBBZ02						
Designation: 8A-10D		A MERCENSE				
Stamping: 5A-10D		AT THE MER AND				
Stability: Monument will probably hold position well	ty: Monument will probably hold position well					
Setting: Massive structures (other than listed below)	Massive structures (other than listed below)					
Description: LOCATED ON THE ALABAMA RIVER, HENRY LOCK AND DAM, IN THE VICI DOWNSTREAM LEFT LOCK GATE AN DOWNSTREAM LEFT LOCK GATE. MC FEET NORTHEAST OF A METAL CLEE SOUTHEAST OF THE CONCRETE HANDRAIL. OF THE THE CONCRETE HANDRAIL. MONUMENT IS A STANDARD U.S. ARI ENGINEERS BRASS DISK SET IN THE I Observed: 2010-06-22T13:08:00Z	NTY OF THE D NEAR THE DNUMENT IS 14.10 T, 13.00 FEET DRAIL, 10.00 FEET AND 12.40 FEET WEST MY CORPS OF	Char an View				
		Close-up View				
Source: OPUS - page5 0909.08						
REF_FRAME: NAD_83 (COR596) EPOCH: SO 2002.0000 GE	URCE: NAVD88 (Computed OID09)	using UNITS: SET m PROFILE DETAILS				
LAT: 32° 19' 19.03351" \pm 0.037 m LON: -86° 47' 2.29515" \pm 0.037 m ELL HT: 12.413 \pm 0.029 m X: 302667.607 \pm 0.036 m Y: $-5386568.278 \pm$ 0.030 m Z: 3390661.205 \pm 0.036 m ORTHO HT: 40.223 \pm 0.029 m		0.99960510 0.99998936				
CONTRIBUTED BY mchaney Maptech Inc	1	2742=				
Horizon View		Proine Creek Public Land Use Jernes Bluf Rd-				

The numerical values for this position solution have satisfied the quality control criteria of the National Geodetic Survey. The contributor has verified that the information submitted is accurate and complete.

R. F. Henry Lock and Dam

EXHIBIT C

STANDING INSTRUCTIONS TO THE DAMTENDERS

FOR WATER CONTROL

R. F. HENRY LOCK AND DAM

STANDING INSTRUCTIONS TO THE POWERHOUSE OPERATOR

FOR WATER CONTROL

ROBERT F. HENRY LOCK AND DAM PROJECT

1. BACKGROUND AND RESPONSIBILITIES

a. <u>General Information</u>. These "Standing Instructions to the Powerhouse Operator for Water Control" are written in compliance with Paragraph 9-2 of EM-1110-2-3600 (Engineering and Design, *Management of Water Control Systems*, 10 Oct 2017) and with ER-1110-2-240 (Engineering and Design, *Water Control Management*, 30 May 2016). A copy of these Standing Instructions must be kept on hand at the project site at all times. Any deviation from the Standing Instructions will require approval of the District Commander.

- (1) **Project Purposes**. The R. F. Henry Lock and Dam Project is operated for Hydropower and Navigation.
- (2) Chain of Command. The Powerhouse Operator is responsible to the Water Control Manager for all water control actions.
- (3) Structure. The R. F. Henry Dam is located at Alabama River mile 236.3, Autauga County, Alabama. The dam is a concrete-gravity structure with a concrete-gravity gated spillway. The Powerhouse is located on the right bank, joined to the spillway on the east or river side. The Lock is located in the left bank between the spillway and the left overbank earth dike.
- (4) Operation and Maintenance (O&M). All O&M activities are the responsibility of the Corps.
- b. Role of the Powerhouse Operator
- (1) Normal Conditions (dependent on day-to-day instruction). The Water Control Manager will coordinate the daily water control actions with SEPA. The Powerhouse Operator will then receive instructions from SEPA. This communication will be increased to an hourly basis if the need develops.
- (2) Emergency Conditions (flood, drought, or special operations). During emergency conditions, the Powerhouse Operator will be instructed by the Water Control Manager on a daily or hourly basis for all water control actions. In the event that communications with Water Management Section are cut off, the Powerhouse Operator will continue to follow the water control plan and contact the Water Management Section as soon as communication is reestablished.

2. DATA COLLECTION AND REPORTING

a. <u>General</u>. R. F. Henry and Millers Ferry Powerhouse data is automatically recorded hourly. A file containing the data is sent to the LDS System every four hours. The information includes pool elevations, megawatt loading of the units, turbine and spillway discharges, gate step settings and inflows.

b. <u>Normal Conditions</u>. At 6:00AM every morning a water management report is sent to the LDS. It includes:

- 1. Midnight Pool Elevation (feet NGVD29)
- 2. 6AM Pool Elevation (feet NGVD29)
- 3. Midnight Tailwater Elevation (feet NGVD29)
- 4. 6AM Tailwater Elevation (feet NGVD29)
- 5. 24-Hour Average Inflow (cfs)
- 6. 1st 4-Hour Average Inflow (cfs)
- 7. 24-Hour Average Discharge (cfs)
- 8. 1st 4-Hour Average Discharge (cfs)
- 9. Gross Generation (MWh)
- 10. Estimated Generation (MWh)
- 11. Rainfall (hundredths of an inch)
- 12. 6AM Gatestep
- 13. 24-Hour Average Turbine Discharge (cfs)
- 14. Capacity (MW)
- 15. Project generation schedule.

c. <u>Regional Hydro-meteorological Conditions</u>. The Powerhouse Operator will be informed by the Water Control Manager of any regional hydro-meteorological conditions that may impact water control actions.

3. WATER CONTROL ACTION AND REPORTING

a. <u>Normal Conditions</u>. During normal conditions, all releases will be made through the turbine units. The Powerhouse Operator will follow the R. F. Henry Water Control Manual for normal water control actions and will report directly to the Water Control Manager.

b. <u>Emergency Conditions</u>. During high-flows, the Lock Operator at R. F. Henry will follow the instructions for spillway gate settings given by the Powerhouse Operator and according to the Gate Operating Schedule. The generating units will be shut down when the operating head decreases to approximately 15.5 feet. During low-flow conditions, the Powerhouse Operator will contact the Water Control Manager if the pool elevation reaches 122.5. If unable to reach Water Management Section, generating units will be shut down at elevation 122.0 feet NGVD29, and the Powerhouse Operator will notify Water Management and SEPA as soon as possible. In no case will releases be made when the pool is below elevation 122.0 feet NGVD29 unless specifically directed by the Water Management Section. The Powerhouse Operator will follow the R. F. Henry Water Control Manual for emergency water control actions and will follow the Emergency Action Plan for emergency notification procedures.

c. <u>Inquiries</u>. All significant inquiries received by the Powerhouse Operator from citizens, constituents, or interest groups regarding water control procedures or actions must be referred directly to the Water Control Manager.

d. <u>Water Control Problems</u>. The Powerhouse Operator must immediately notify the Water Control Manager, by the most rapid means available, in the event that an operational malfunction, erosion, or other incident occurs that could impact project integrity in general or water control capability in particular.

e. Low Head.

1. This SOP provides low head operating procedures for power plant shift operators to follow for Millers Ferry and Jones Bluff Powerhouses. Under normal conditions, the established minimums and maximums will remain in effect.

2. During times of low gross head (elevated tailwater) due to high inflows, continued generation below minimum is permitted, as head drops, until unit output falls to 5.0 MW per generator and exceeds 75% wicket gate opening. Low head operation significantly increases cavitation, and throttling wicket gates only drops pressure further. Operation with wicket gates open further than 75% provides minimal additional flow, and operation above 85% gate results in a significant increase in cavitation.

3. When tailwater level drops, increasing the net head, and at the discretion of the Shift Operator, resume operation of the generators when an output of 5.0 MW with a wicket gate opening below 75% can again be obtained. This will require a gross head of approximately:

- 15.5 feet for Jones Bluff
- 16.0 feet for Millers Ferry

4. All reporting procedures remain unchanged. Operator judgment should be used to remain as close to these guidelines as possible.

EXHIBIT D

ALABAMA-COOSA-TALLAPOOSA (ACT) RIVER BASIN DROUGHT CONTINGENCY PLAN

DROUGHT CONTINGENCY PLAN

FOR

ALABAMA-COOSA-TALLAPOOSA RIVER BASIN

ALLATOONA DAM AND LAKE CARTERS DAM AND LAKE ALABAMA POWER COMPANY COOSA RIVER PROJECTS ALABAMA POWER COMPANY TALLAPOOSA RIVER PROJECTS ALABAMA RIVER PROJECTS

South Atlantic Division Mobile District

April 2022

DROUGHT CONTINGENCY PLAN

FOR THE

ALABAMA-COOSA-TALLAPOOSA RIVER BASIN

I – INTRODUCTION

1-01. Purpose of Document. The purpose of this Drought Contingency Plan (DCP) is to provide a basic reference for water management decisions and responses to water shortage in the Alabama-Coosa-Tallapoosa (ACT) River Basin induced by climatological droughts. As a water management document, it is limited to those drought concerns relating to water control management actions for Federal U.S. Army Corps of Engineers (Corps) and Alabama Power Company (APC) dams. This DCP does not prescribe all possible actions that might be taken in a drought situation due to the long-term nature of droughts and unique issues that may arise. The primary value of this DCP is in documenting the overall ACT Basin Drought Management Plan for the system of Corps and APC projects; in documenting the data needed to support water management decisions related to drought regulation; and in defining the coordination needed to manage the ACT project's water resources to ensure that they are used in a manner consistent with the needs which develop during a drought. This DCP addresses the water control regulation of the five Corps impoundments and the APC Coosa and Tallapoosa projects (Table 1) in regard to water control regulation during droughts. Details of the drought management plan as it relates to each project and its water control regulation during droughts are provided in the water control manual within the respective project appendix to the ACT Basin Master Water Control Manual.

II – AUTHORITIES

2-01. <u>Authorities</u>. The following list provides the policies and guidance that are pertinent to the development of drought contingency plans and actions directed therein.

A. ER 1110-2-1941, "Drought Contingency Plans", dated 02 Feb 2018. This regulation provides policy and guidance for the preparation of drought contingency plans as part of the Corps of Engineers' overall water management activities.

B. ER 1110-2-8156, "Preparation of Water Control Manuals", dated 30 Sep 2018. This document provides a guide for preparing water control manuals for individual water resource projects and for overall river basins to include drought contingency plans.

C. ER 1110-2-240, "Water Control Management", dated 30 May 2016. This regulation prescribes the policies and procedures to be followed in water management activities including special regulations to be conducted during droughts. It also sets the responsibility and approval authority in development of water control plans.

D. EM 1110-2-3600, "Management of Water Control Systems", dated 10 Oct 2017. This guidance memorandum requires that the drought management plan be incorporated into the project water control manuals and master water control manuals. It also provides guidance in formulating strategies for project regulation during droughts.

	Our and Otata /	Tatalatanana at	Ormonyation	Percentage of ACT Basin
River/Project Name	Owner/State/ Year Initially Completed	Total storage at Full Pool (acre-feet)	Conservation Storage (acre-feet)	Conservation Storage (%)
Coosawattee River				
Carters Dam and Lake	Corps/GA/1974	383,565	141,402	5.9
Carters Reregulation Dam	Corps/GA/1974	17,380	16,571	0.1
Etowah River				
Allatoona Dam and Lake	Corps/GA/1949	338,253	270,247	10.3
Hickory Log Creek Dam	CCMWA/Canton/2007	17,702	NA	NA
Coosa River				
Weiss Dam and Lake	APC/AL/1961	306,655	263,417	10.0
H. Neely Henry Dam and Lake	APC/AL/1966	120,853	118,210	4.5
Logan Martin Dam and Lake	APC/AL/1964	273,467	141,897	5.5
Lay Dam and Lake	APC/AL/1914	262,887	92,352	3.5
Mitchell Dam and Lake	APC/AL/1923	170,783	51,577	1.9
Jordan Dam and Lake	APC/AL/1928	236,130	19,057	0.7
Walter Bouldin Dam	APC/AL/1967	236,130	NA	
Tallapoosa River				
Harris Dam and Lake	APC/AL/1982	425,721	207,318	7.9
Martin Dam and Lake	APC/AL/1926	1,628,303	1,202,340	45.7
Yates Dam and Lake	APC/AL/1928	53,908	6,928	0.3
Thurlow Dam and Lake	APC/AL/1930	17,976	NA	
Alabama River				
Robert F. Henry Lock and Dam/ R. E. "Bob" Woodruff Lake	Corps/AL/1972	247,210	36,450	1.4
Millers Ferry Lock and Dam/ William "Bill" Dannelly Lake	Corps/AL/1969	346,254	46,704	1.8
Claiborne Lock and Dam and Lake	Corps/AL/1969	102,480	NA	

Table 1. Reservoir impoundments within the ACT River Basin

III – DROUGHT IDENTIFICATION

3-01. <u>Definition</u>. Drought can be defined in different ways - meteorological, hydrological, agricultural, and socioeconomic. In this DCP, the definition of drought used in the *National Study of Water Management During Drought* is used:

"Droughts are periods of time when natural or managed water systems do not provide enough water to meet established human and environmental uses because of natural shortfalls in precipitation or streamflow."

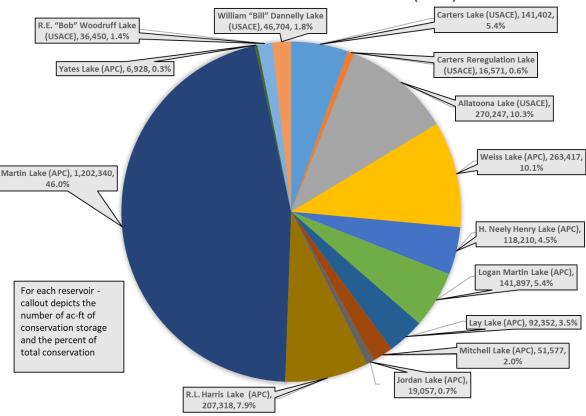
That definition defines drought in terms of its impact on water control regulation, reservoir levels, and associated conservation storage. Water management actions during droughts are intended to balance the water use and water availability to meet water use needs. Because of hydrologic variability, there cannot be 100 percent reliability that all water demands are met.

Droughts occasionally will be declared, and mitigation or emergency actions initiated to lessen the stresses placed on the water resources within a river basin. Those responses are tactical measures to conserve the available water resources (USACE 2009).

3-02. <u>**Drought Identification**</u>. There is no known method of predicting how severe or when a drought will occur. There are, however, indicators that are useful in determining when conditions are favorable: below normal rainfall; lower than average inflows; and low reservoir levels, especially immediately after the spring season when rainfall and runoff conditions are normally the highest. When conditions indicate that a drought is imminent, the Corps Water Management Section (WMS) and APC will increase the monitoring of the conditions and evaluate the impacts on reservoir projects if drought conditions continue or become worse for 30-, 60-, or 90-day periods. Additionally, WMS and APC will determine if a change in operating criteria would aid in the total regulation of the river system and if so, what changes would provide the maximum benefits from any available water.

Various products are used to detect and monitor the extent and severity of basin drought conditions. One key indicator is the U.S. Drought Monitor available through the U.S. Drought Portal, www.drought.gov. The National Weather Service (NWS) Climate Prediction Center (CPC) also develops short-term (6- to 10-day and 8- to 14-day) and long-term (1-month and 3month) precipitation and temperature outlooks and a U.S. Seasonal Drought Outlook, which are useful products for monitoring dry conditions. The Palmer Drought Severity Index is also used as a drought reference. The Palmer index assesses total moisture by using temperature and precipitation to compute water supply and demand and soil moisture. It is considered most relevant for non-irrigated cropland and primarily reflects long-term drought. However, the index requires detailed data and cannot reflect an operation of a reservoir system. The Alabama Office of the State Climatologist also produces a Lawn and Garden Moisture Index for Alabama, Florida, Georgia, and South Carolina, which gives a basin-wide ability to determine the extent and severity of drought conditions. The runoff forecasts developed for both short- and longrange periods reflect drought conditions when appropriate. There is also a heavy reliance on the latest El Niño Southern Oscillation (ENSO) forecast modeling to represent the potential effects of La Niña on drought conditions and spring inflows. Long-range models are used with greater frequency during drought conditions to forecast potential effects on reservoir elevations, ability to meet minimum flows, and water supply availability. A long-term, numerical model, Extended Streamflow Prediction, developed by the NWS, provides probabilistic forecasts of streamflow and reservoir stages on the basis of climatic conditions, streamflow, and soil moisture. Extended Streamflow Prediction results are used in projecting possible future drought conditions. Other parameters and models can indicate a lack of rainfall and runoff and the degree of severity and continuance of a drought. For example, models using data of previous droughts or a percent of current to mean monthly flows with several operational schemes have proven helpful in forecasting reservoir levels for water management planning purposes. Other parameters considered during drought management are the ability of the various lakes to meet the demands placed on storage, the probability that lake elevations will return to normal seasonal levels, basin stream flows, basin groundwater table levels, and the total available storage to meet hydropower marketing system demands.

3-03. <u>Historical Droughts</u>. Drought events have occurred in the ACT Basin with varying degrees of severity and duration. Five of the most significant historical basin wide droughts occurred in 1940-1941, 1954-1958, 1984-1989, 1999-2003, and 2006-2009. The 1984 to 1989 drought caused water shortages across the basin in 1986. This resulted in the need for the Corps to adjust water management practices. Water shortages occurred again from 1999 through 2002 and during 2007 through 2008. The 2006 to 2009 drought was the most devastating recorded in Alabama and western Georgia. Precipitation declines began in


December 2005. These shortfalls continued through winter 2006-07 and spring 2007, exhibiting the driest winter and spring in the recorded period of record. The Corps and APC had water levels that were among the lowest recorded since the impoundments were constructed. North Georgia received less than 75 percent of normal precipitation (30-year average). The drought reached peak intensity in 2007, resulting in a D-4 Exceptional Drought Intensity (the worst measured) throughout the summer of 2007.

3-04. <u>Severity</u>. Water shortage problems experienced during droughts are not uniform throughout the ACT River Basin. Even during normal, or average, hydrologic conditions, various portions of the basin experience water supply problems. The severity of the problems is primarily attributed to the pattern of human habitation within the basin; the source of water utilized (surface water vs. ground water); and the characteristics of the water resources available for use. During droughts, these problems can be intensified. A severe drought in the basin develops when a deficiency of rainfall occurs over a long time period and has a typical duration of 18 to 24 months. The number of months of below normal rainfall is more significant in determining the magnitude of a drought in the basin than the severity of the deficiency in specific months. However, the severity of the rainfall deficiency during the normal spring wet season has a significant impact on the ability to refill reservoirs after the fall/winter drawdown period. Another confounding factor which influences droughts in the basin is the variability of rainfall over the basin, both temporarily and spatially.

IV – BASIN AND PROJECT DESCRIPTION

4-01. <u>Basin Description</u>. The headwater streams of the Alabama-Coosa-Tallapoosa (ACT) River Basin rise in the Blue Ridge Mountains of Georgia and Tennessee and flow southwest, combining at Rome, Georgia, to form the Coosa River. The confluence of the Coosa and Tallapoosa Rivers in central Alabama forms the Alabama River near Wetumpka, Alabama. The Alabama River flows through Montgomery and Selma and joins with the Tombigbee River at the mouth of the ACT Basin to form the Mobile River about 45 miles above Mobile, Alabama. The Mobile River flows into Mobile Bay at an estuary of the Gulf of Mexico. The total drainage area of the ACT Basin is approximately 22,739 square miles: 17,254 square miles in Alabama; 5,385 square miles in Georgia; and 100 square miles in Tennessee. A detailed description of the ACT River Basin is provided in the ACT Master Water Control Manual, Chapter 4 – Watershed Characteristics.

4-02. <u>**Project Description**</u>. The Corps operates five projects in the ACT Basin: Allatoona Dam and Lake on the Etowah River; Carters Dam and Lake and Reregulation Dam on the Coosawattee River; and Robert F. Henry Lock and Dam, Millers Ferry Lock and Dam, and Claiborne Lock and Dam on the Alabama River. Claiborne is a lock and dam without any appreciable water storage behind it. Robert F. Henry and Millers Ferry are operated as run-of-river projects and only very limited pondage is available to support hydropower peaking and other project purposes. APC owns and operates eleven hydropower dams in the ACT Basin: seven dams on the Coosa River and four dams on the Tallapoosa River. Figure 1 depicts the percentage of conservation storage of each project in the ACT Basin. Figure 2 shows the project locations within the basin. Figure 3 provides a profile of the basin and each project.

ACT RIVER BASIN - CONSERVATION STORAGE (AC-FT)

Figure 1. ACT Basin Reservoir Conservation Storage

A. **General.** Of the 16 reservoirs (considering Jordan Dam and Lake and Bouldin Dam as one reservoir and Carters Lake and Carters Reregulation Dam as one reservoir), Lake Martin on the Tallapoosa River has the greatest amount of storage, containing 45.9 percent of the conservation storage in the ACT Basin. Allatoona Lake, R.L. Harris Lake, Weiss Lake, and Carters Lake are the next four largest reservoirs in terms of storage. APC controls approximately 80 percent of the available conservation storage; Corps projects (Robert F. Henry Lock and Dam, Millers Ferry Lock and Dam, Allatoona Lake, and Carters Lake) control approximately 20 percent. The two most upstream Corps reservoirs, Allatoona Lake and Carters Lake, account for 15.7 percent of the total basin conservation storage.

Figure 2. Alabama-Coosa-Tallapoosa River Basin Project Location Map

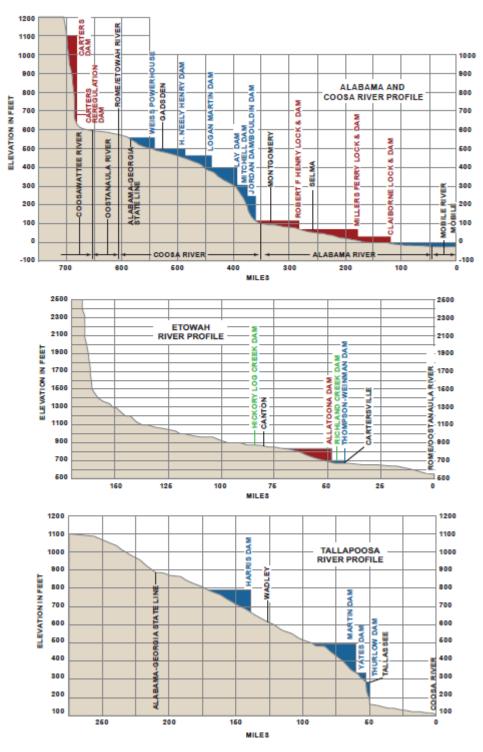


Figure 3. Alabama-Coosa-Tallapoosa River Basin Profile Map

B. **Allatoona Dam and Lake**. The Corps' Allatoona Dam on the Etowah River creates the 11,164 acres Allatoona Lake. The project's authorization, general features, and purposes are described in the Allatoona Dam and Lake Water Control Manual. The Allatoona Lake top of conservation pool is elevation 840 feet NGVD29 during the late spring and summer months (May through August); transitions to elevation 835 feet NGVD29 in the fall (October through mid-November); transitions to a winter drawdown to elevation 823 feet NGVD29 (1-15 January); and refills back to elevation 840 feet NGVD29 during the winter and spring wet season as shown in the water control plan guide curve (Figure 4). However, the lake level may fluctuate significantly from the guide curve over time, dependent primarily upon basin inflows but also influenced by project operations, evaporation, withdrawals, and return flows. A minimum flow of about 240 cfs is continuously released through a small unit, which generates power while providing a constant flow to the Etowah River downstream. Under drier conditions when basin inflows are reduced, project operations are adjusted to conserve storage in Allatoona Lake while continuing to meet project purposes in accordance with four action zones as shown on Figure 4.

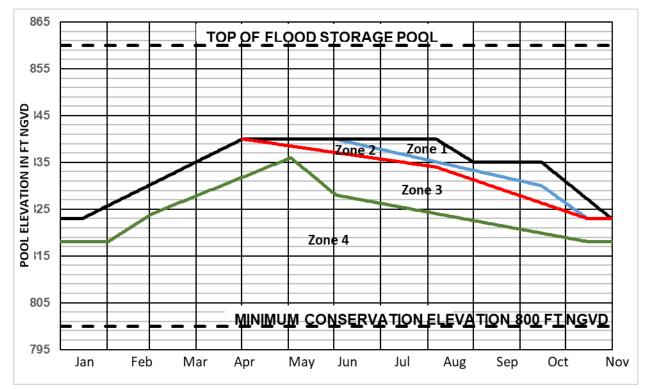


Figure 4. Allatoona Lake Guide Curve and Action Zones

C. Carters Dam and Lake and Reregulation Dam. Carters Lake is formed by Carters Dam, a Corps' reservoir on the Coosawattee River in northwest Georgia upstream of Rome, Georgia. The Carters project is a pumped-storage peaking facility that utilizes a Reregulation Dam and storage pool in conjunction with the main dam and lake. The project's authorization, general features, and purposes are described in the Carters Dam and Lake and Regulation Dam water control manual. The Carters Lake top of conservation pool is elevation 1,074 feet NGVD29 from 1 May to 1 November; transitioning to elevation 1,072 feet NGVD29 between 1 November and 1 December; remains at elevation 1,072 feet NGVD 29 from 1 December to April; then transitioning back to 1,074 feet NGVD29 between 1 April and 1 May. This is shown in the water control plan guide curve (Figure 5). As expected with a peaking/pumped storage operation, both Carters Lake and the reregulation pool experience frequent elevation changes. Typically, water levels in Carters Lake vary no more than 1 to 2 feet per day. The reregulation pool will routinely fluctuate by several feet (variable) daily as the pool receives peak hydropower discharges from Carters Lake and serves as the source for pumpback operations into Carters Lake during non-peak hours. The reregulation pool will likely reach both its normal maximum elevation of 696 feet NGVD29 and minimum elevation of 677 feet NGVD29 at least once each week. However, the general trend of the lake level may fluctuate significantly from the guide curve over time, dependent primarily upon basin inflows but also influenced by project operations and evaporation. Carters Regulation Dam provides a seasonal varying minimum release to the Coosawattee River for downstream fish and wildlife conservation. Under drier conditions when basin inflows are reduced, project operations are adjusted to conserve storage in Carters Lake while continuing to meet project purposes in accordance with action zones as shown on Figure 5. In Zone 2, Carters Regulations Dam releases are reduced to 240 cfs.

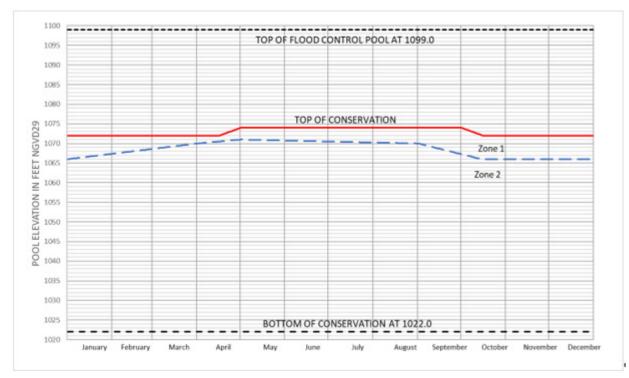


Figure 5. Carters Lake Guide Curve and Action Zones

D. APC Coosa River Projects. APC owns and operates the Coosa Hydro system of projects at Weiss Lake, H. Neely Henry Lake, Logan Martin Lake, Lay Lake, Mitchell Lake, and Jordan/Bouldin Dam and Lake on the Coosa River in the ACT Basin. APC Coosa River projects function mainly to generate electricity by hydropower. In addition, the upper three projects (Weiss, H. Neely Henry, and Logan Martin) operate pursuant to P. L. 83-436 regarding the requirement for the projects to be operated for flood risk management and navigation in accordance with reasonable rules and regulations of the Secretary of the Army. The rules and regulations are addressed in a memorandum of understanding between the Corps and APC (Exhibit B of the Master Water Control Manual, Alabama-Coosa-Tallapoosa (ACT) River Basin, Alabama, Georgia), in individual water control manuals for the three projects, and in this ACT Basin DCP. The Weiss Lake is on the Coosa River in northeast Alabama, about 80 mi northeast of Birmingham, Alabama, and extends into northwest Georgia for about 13 miles upstream on the Coosa River. The dam impounds a 30,027 acres reservoir (Weiss Lake) at the normal summer elevation of 564 feet NGVD29 as depicted in the regulation guide curve shown in Figure 6 (source APC). The H. Neelv Henry Lake is on the Coosa River in northeast Alabama, about 60 miles northeast of Birmingham, Alabama. The dam impounds an 11,200 acres reservoir at the normal summer elevation of 508 feet NGVD29 as depicted in the regulation guide curve shown in Figure 7 (source APC). The Logan Martin Lake is in northeast Alabama on the Coosa River, about 40 miles east of Birmingham, Alabama. The dam impounds a 15,269-acre reservoir at the normal summer elevation of 465 feet NGVD29 as depicted in the regulation guide curve shown in Figure 8 (source APC). The projects' authorizations, general features, and purposes are described in the Weiss, H. Neely Henry, and Logan Martin water control manual appendices to the ACT Basin Master Water Control Manual.

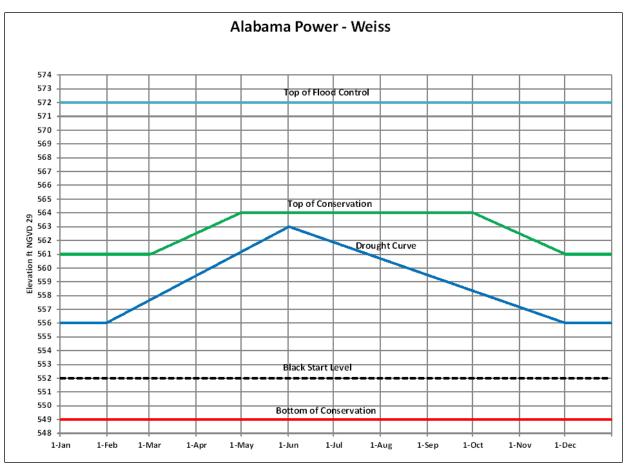


Figure 6. Weiss Lake Guide Curve

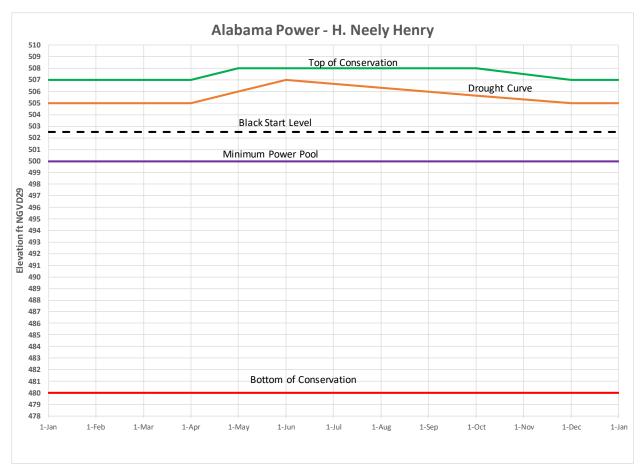


Figure 7. H. Neely Henry Lake Guide Curve

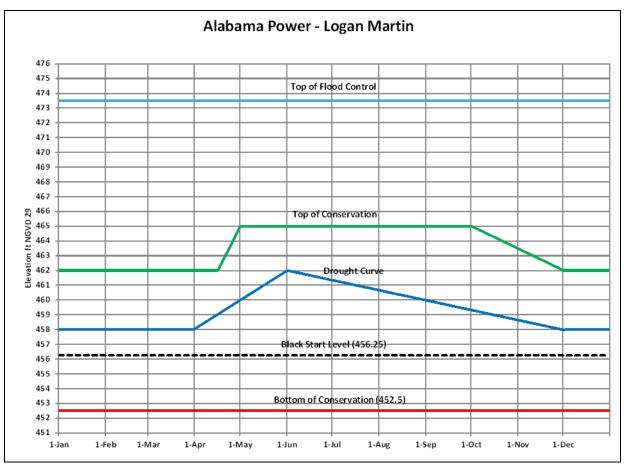


Figure 8. Logan Martin Lake Guide Curve

The downstream Coosa River APC run-of-river hydropower projects (Lay Dam and Lake, Mitchell Dam and Lake, and Jordan/Bouldin Dams and Lake) have no appreciable storage and are operated in conjunction with the upstream Coosa projects to meet downstream flow requirements and targets in support of the ACT Basin Drought Plan and navigation.

E. **APC Tallapoosa River Projects**. APC owns and operates the Tallapoosa River system of projects at Harris Dam and Lake, Martin Dam and Lake, Yates Dam, and Thurlow Dam in the ACT Basin. APC Tallapoosa River projects function mainly to generate electricity by hydropower. In addition, the Robert L. Harris Project operates pursuant to 33 CFR, Chapter II, Part 208, Section 208.65 regarding the requirement for the project to be operated for flood risk management and navigation in accordance with reasonable rules and regulations of the Secretary of the Army. The rules and regulations prescribed are described in a memorandum of understanding between the Corps and APC, individual water control manuals for the APC projects, and this DCP.

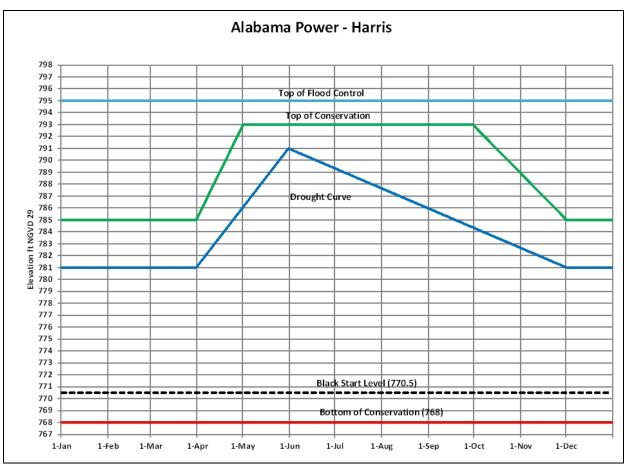


Figure 9. Robert L. Harris Lake Guide Curve



Figure 10. Martin Lake Guide Curve

F. **Corps Alabama River Projects**. The Corps operates three run-of-river lock and dam projects (Robert F. Henry, Millers Ferry, Claiborne) on the Alabama River in the lower ACT Basin to support commercial navigation. Claiborne Lake, together with R. E. "Bob" Woodruff Lake and William "Bill" Dannelly Lake, are collectively referred to as the Alabama River Lakes. The primary location used for communicating the available reliable navigation depth is the Claiborne Lock and Dam tailwater elevation. The water surface elevation is related to the available navigation depth based on the latest hydrographic surveys of the lower Alabama River reach downstream of Claiborne.

(1) <u>Robert F. Henry</u>. The R. E. "Bob" Woodruff Lake is created by the Robert F. Henry Lock and Dam on the Alabama River at river mile 236.3. R. E. "Bob" Woodruff Lake extends from the Robert F. Henry Lock and Dam upstream to the Walter Bouldin Dam. In addition to hydropower and navigation, R. E. "Bob" Woodruff Lake provides recreation and fish and wildlife conservation. R. E. "Bob" Woodruff Lake is 77 miles long and averages 1,300 feet wide. It has a surface area of 12,510 acres and a storage capacity of 234,211 acre-feet at a normal pool elevation of 125 feet NGVD29. Lake levels are typically fairly stable with minimal fluctuation between the operating pool elevation limits, 123 feet NGVD29 to 126 feet NGVD29. The emergency drawdown pool elevation is 122 feet NGVD29. An authorized 9-foot-deep by 200-foot-wide navigation channel exists over the entire length of the lake. The Jones Bluff hydropower plant generating capacity is 82 MW (declared value). The lake is a popular recreation destination, receiving up to two million visitors annually.

(2) <u>Millers Ferry</u>. The William "Bill" Dannelly Lake is created by the Millers Ferry Lock and Dam on the Alabama River at river mile 133. William "Bill" Dannelly Lake is 103 miles long and averages almost 1,400 feet wide. The reservoir has a surface area of 18,528 acres and a storage capacity of 346,254 acre-feet at the upper level of the operating range of the normal pool elevation of 80.8 feet NGVD29. Lake levels remain fairly stable on a day-to-day basis with minimal fluctuation between the operating pool elevation limits, 78 feet NGVD29 to 80.8 feet NGVD29. It has an authorized 9-foot-deep by 200-foot-wide navigation channel which extends the entire length of the reservoir. The facility is a multipurpose reservoir constructed by the Corps for both navigation and hydropower. The reservoir also provides recreational benefits and has lands managed for wildlife mitigation. The Millers Ferry hydropower plant generating capacity is 90 MW (declared value). The reservoir provides ample recreation opportunities. Recreation visitors number three million annually.

(3) <u>Claiborne</u>. Claiborne Lake is created by the Claiborne Lock and Dam on the Alabama River at river mile 72.5. The lake is similar to a wide river, averaging about 800 feet wide, with a surface area of 5,930 acres. Claiborne Lake extends 60 miles upstream to the Millers Ferry Lock and Dam. Storage capacity in the lake is 96,360 acre-feet at a normal pool elevation of 35 feet NGVD29. The operating pool elevation limits are between 32 feet NGVD29 and 36 feet NGVD29. The lake has an authorized 9-foot-deep, 200-foot-wide navigation channel extending its entire length. The primary purpose of the Corps project is navigation. No hydropower generating capability exists at the project. The lake also provides recreation benefits and lands managed for wildlife mitigation.

G. As other ACT water management objectives are addressed, lake levels might decline during prime recreation periods. Drought conditions will cause further drawdowns in lake levels. While lake levels will be slightly higher than what would naturally occur if no specific drought actions were taken, reservoir levels will decline thus triggering impacts associated with reaching initial recreation and water access limited levels. Large reservoir drawdowns impact recreational use: access to the water for boaters and swimmers is inhibited; submerged hazards (e.g., trees, shoals, boulders) become exposed or nearly exposed, posing safety issues; and exposed banks and lake bottoms become unsightly and diminish the recreation experience. Consequently, certain levels are identified in each Corps impoundment at which recreation would be affected. The Initial Impact level (IIL) represents the level at which recreation impacts are first observed (i.e., some boat launching ramps are unusable, most beaches are unusable or minimally usable, and navigation hazards begin to surface). The Recreation Impact level (RIL) defines the level at which major impacts on concessionaires and recreation are observed (more ramps are not usable, all beaches are unusable, boats begin having problems maneuvering in and out of marina basin areas, loss of retail business occurs). The level at which severe impacts are observed in all aspects of recreational activities is called the Water Access Limited level (WAL). At this point, all or almost all boat ramps are out of service, all swimming beaches are unusable, major navigation hazards occur, channels to marinas are impassable and/or wet slips must be relocated, and a majority of private boat docks are unusable. The individual project water control manuals describe the specific impact levels at each project and provide information regarding the effects of the water control plans on recreation.

V – WATER USES AND USERS

5-01. Water Uses and Users.

A. Uses – The ACT Basin rivers and lakes provide for wastewater dilution, M&I water supply, fish and wildlife propagation, hydropower generation, and recreational boating and fishing.

B. Users – The following tables list the surface water uses and water users within Georgia and Alabama in the ACT Basin.

Water use category	Quantity million gallons per day (mgd)	% of total				
Total Use	2,231	100%				
Public Supply	839.9	38%				
Domestic and Commercial	3.21	0%				
Industrial and Mining	286.7	13%				
Irrigation	174.4	7%				
Livestock	87.9	4%				
Thermoelectric Power Generation	839.8	38%				

Table 2. Surface water use: ACT Basin (Georgia 2015)

Source: U.S. Department of the Interior, U.S. Geological Survey, Estimated Use of Water in Georgia for 2015 and Water-Use Trends, 1985-2015, Open-File Report 2019-1086

River basin	Permit holder	Permit number	County	Source water	Permit limit max day (mgd)	Permit limit monthly average (mgd)			
Coosa River Basin (Georgia)—upstream counties to downstream counties									
Coosa	Dalton Utilities, Conasauga R	155-1404-01	Whitfield	Conasauga River	49.400	40.300			
Coosa	Dalton Utilities, Mill Creek	155-1404-02	Whitfield	Mill Creek	13.200	7.500			
Coosa	Dalton Utilities, Coahulla Cr	155-1404-03	Whitfield	Coahulla Creek	6.000	5.000			
Coosa	Dalton Utilities, Freeman Springs	155-1404-04	Whitfield	Freeman Springs	2.000	1.500			
Coosa	Dalton Utilities - River Road	155-1404-05	Whitfield	Conasauga River	35.000	18.000			
Coosa	Chatsworth WW Commission	105-1405-01	Murray	Holly Creek	1.100	1.000			
Coosa	Chatsworth WW Commission	105-1405-02	Murray	Eton Springs	1.800	1.800			
Coosa	Chatsworth WW Commission	105-1409-01	Murray	Carters Lake	2.550	2.300			
Coosa	Chatsworth, City of	105-1493-02	Murray	Coosawattee River	2.200	2.000			
Coosa	Ellijay, City of - Ellijay R	061-1407-01	Gilmer	Ellijay River	0.550	0.450			
Coosa	Ellijay - Gilmer County W & S Authority	061-1408-01	Gilmer	Cartecay River	4.000	4.000			
Coosa	Calhoun, City of	064-1411-03	Gordon	Big Spring	7.000	6.000			
Coosa	Calhoun, City of	064-1412-01	Gordon	City Of Calhoun Spring	0.638	0.537			
Coosa	Calhoun, City of	064-1492-02	Gordon	Oostanaula River	6.200	3.000			

Table 3. M&I surface water withdrawal permits in the ACT Basin (Georgia)

					Permit limit max day	Permit limit monthly
River basin	Permit holder	Permit number	County	Source water	(mgd)	average (mgd)
Coosa	Calhoun, City of	064-1493-01	Gordon	Coosawattee River	18.000	16.000
Coosa	Jasper, City of	112-1417-02	Pickens	Long Swamp Creek	1.000	1.000
Coosa	Bent Tree Community, Inc.	112-1417-03	Pickens	Chestnut Cove Creek and unnamed creek	0.250	0.230
Coosa	Bent Tree Community, Inc.	112-1417-04	Pickens	Lake Tamarack	0.250	0.230
Coosa	Big Canoe Utilities Company, Inc.	112-1417-05	Pickens	Lake Petit	1.000	1.000
Coosa	Big Canoe Utilities Company, Inc.	112-1417-06	Pickens	Blackwell Creek	2.650	2.650
Coosa	Etowah Water & Sewer Authority	042-1415-01	Dawson	Etowah River	5.500	4.400
Coosa	Cherokee County Water & Sewerage Auth	028-1416-01	Cherokee	Etowah River	43.200	36.000
Coosa	Gold Kist, Inc	028-1491-03	Cherokee	Etowah River	5.000	4.500
Coosa	Canton, City of	028-1491-04	Cherokee	Etowah River	23.000	18.700
Coosa	Canton, City of (Hickory Log Creek)	028-1491-05	Cherokee	Etowah River	39.000	39.000
Coosa	Bartow County Water Department	008-1411-02	Bartow	Bolivar Springs	0.800	0.800
Coosa	Adairsville, City of	008-1412-02	Bartow	Lewis Spring	5.100	4.100
Coosa	New Riverside Ochre Company, Inc.	008-1421-01	Bartow	Etowah River	5.000	5.000
Coosa	New Riverside Ochre Company, Inc.	008-1421-02	Bartow	Etowah River	6.000	6.000
Coosa	Emerson, City of	008-1422-02	Bartow	Moss Springs	0.630	0.500
Coosa	Gerdau AmeriSteel US, Inc. – Cartersville Steel Mill	008-1423-01	Bartow	Pettit Creek	2.000	1.500
Coosa	Baroid Drilling Fluids, Inc.	008-1423-02	Bartow	Etowah River	3.400	2.500
Coosa	Cartersville, City of	008-1423-04	Bartow	Etowah River	26.420	23.000
Coosa	Georgia Power Co Plant Bowen	008-1491-01	Bartow	Etowah River	520.000	85.000
Coosa	CCMWA	008-1491-05	Bartow	Allatoona Lake	86.000	78.000
Coosa	Cartersville, City of	008-1491-06	Bartow	Allatoona Lake	21.420	18.000
Coosa	La Fayette, City of Dry Creek	146-1401-01	Walker	Dry Creek	1.000	0.900
Coosa	La Fayette, City of Big Spring	146-1401-02	Walker	Big Spring	1.650	1.310
Coosa	Mount Vernon Mills - Riegel Apparel Div.	027-1401-03	Chattooga	Trion Spring	9.900	6.600
Coosa	Summerville, City of	027-1402-02	Chattooga	Raccoon Creek	3.000	2.500
Coosa	Summerville, City of	027-1402-04	Chattooga	Lowe Spring	0.750	0.500
Coosa	Mohawk Industries, Inc.	027-1402-05	Chattooga	Chattooga R./ Raccoon Cr.	4.500	4.000

Table 3 (continued). M&I surface water withdrawal permits in the ACT Basin (Georgia)

River basin	Permit holder	Permit number	County	Source water	Permit limit max day (mgd)	Permit limit monthly average (mgd)
Coosa	Oglethorpe Power Corp.	057-1402-03	Floyd	Heath Creek	3,838.000	3,030.000
Coosa	Floyd County - Brighton Plant	057-1414-02	Floyd	Woodward Creek	0.800	0.700
Coosa	Cave Spring, City of	057-1428-06	Floyd	Cave Spring	1.500	1.300
Coosa	Floyd County	057-1428-08	Floyd	Old Mill Spring	4.000	3.500
Coosa	Berry Schools, The (Berry College)	057-1429-01	Floyd	Berry (Possum Trot) Reservoir	1.000	0.700
Coosa	Inland-Rome Inc.	057-1490-01	Floyd	Coosa River	34.000	32.000
Coosa	Georgia Power Co Plant Hammond	057-1490-02	Floyd	Coosa River	655.000	655.000
Coosa	Rome, City of	057-1492-01	Floyd	Oostanaula & Etowah R	18.000	16.400
Coosa	Rockmart, City of	115-1425-01	Polk	Euharlee Creek	2.000	1.500
Coosa	Vulcan Construction Materials, L.P.	115-1425-03	Polk	Euharlee Creek	0.200	0.200
Coosa	Cedartown, City of	115-1428-04	Polk	Big Spring	3.000	2.600
Coosa	Polk County Water Authority	115-1428-05	Polk	Aragon, Morgan, Mulco Springs	1.600	1.100
Coosa	Polk County Water Authority	115-1428-07	Polk	Deaton Spring	4.000	4.000
Tallapoosa R	River Basin (Georgia)					
Tallapoosa	Haralson County Water Authority	071-1301-01	Haralson	Tallapoosa River	3.750	3.750
Tallapoosa	Bremen, City of	071-1301-02	Haralson	Beech Creek & Bremen Reservoir (Bush Creek)	0.800	0.580
Tallapoosa	Bowdon, City of Indian	022-1302-01	Carroll	Indian Creek	0.400	0.360
Tallapoosa	Southwire Company	022-1302-02	Carroll	Buffalo Creek	2.000	1.000
Tallapoosa	Villa Rica, City of	022-1302-04	Carroll	Lake Paradise & Cowens Lake	1.500	1.500
Tallapoosa	Carrollton, City of	022-1302-05	Carroll	Little Tallapoosa River	12.000	12.000
Tallapoosa	Bowdon, City of Lake Tysinger	022-1302-06	Carroll	Lake Tysinger	1.000	1.000

Table 3 (continued). M&I surface water withdrawal permits in the ACT Basin (Georgia)

Source: GAEPD 2009a

Basin (subbasin)	Withdrawal by	County	Withdrawal (mgd)
Coosa River Basin (Georgia)	·		
Coosa (Conasauga)	Dalton Utilities	Whitfield	35.38
Coosa (Conasauga)	City of Chatsworth	Murray	1.26
Coosa (Coosawattee)	Ellijay-Gilmer County Water System	Gilmer	3.12
Coosa (Coosawattee)	City of Fairmount	Gordon	0.06
Coosa (Oostanaula)	City of Calhoun	Gordon	9.10
Coosa (Etowah)	Big Canoe Corporation	Pickens	0.48
Coosa (Etowah)	City of Jasper	Pickens	1.00
Coosa (Etowah)	Bent Tree Community	Pickens	0.07
Coosa (Etowah)	Lexington Components Inc (Rubber)	Pickens	0.01
Coosa (Etowah)	Etowah Water and Sewer Authority	Dawson	1.50
Coosa (Etowah)	Town of Dawsonville	Dawson	0.10
Coosa (Etowah)	City of Canton	Cherokee	2.83
Coosa (Etowah)	Cherokee County Water System	Cherokee	15.81
Coosa (Etowah)a	Gold Kist, Inc.	Cherokee	1.94
Coosa (Etowah)	City of Cartersville	Bartow	13.26
Coosa (Etowah)	New Riverside Ochre Company, Inc (Chemicals)	Bartow	1.67
Coosa (Etowah)	Gerdau AmeriSteel US, Inc. – Cartersville Steel Mill (Primary metals)	Bartow	0.16
Coosa (Etowah)	Georgia Power Co – Plant Bowen	Bartow	38.92
Coosa (Etowah)	CCMWA	Bartow	44.42
Coosa (Upper Coosa)	City of Lafayette	Walker	1.20
Coosa (Upper Coosa)	City of Summerville	Chattooga	2.05
Coosa (Upper Coosa)	Mount Vernon Mills – Riegel Apparel Division (Textiles)	Chattooga	2.74
Coosa (Oostanaula)	City of Cave Spring (Domestic/Commercial)	Floyd	0.30
Coosa (Etowah / Oostanaula)	City of Rome	Floyd	9.98
Coosa (Upper Coosa)	Floyd County Water System	Floyd	2.57
Coosa (Upper Coosa)	Inland-Rome Inc. (Paper)	Floyd	25.74
Coosa (Upper Coosa)	Georgia Power Co - Plant Hammond	Floyd	535.00
Coosa (Upper Coosa)	Polk County Water Authority	Polk	2.22
Coosa (Etowah)	Vulcan Construction Materials	Polk	0.09
Tallapoosa River Basin (Georgi	a)		·
Tallapoosa (Upper)	City of Bremen	Haralson	0.32
Tallapoosa (Upper)	Haralson County Water Authority	Haralson	2.05
Tallapoosa (Upper)	City of Bowdon	Carroll	0.75
Tallapoosa (Upper)	Southwire Company	Carroll	0.09
Tallapoosa (Upper)	City of Carrollton	Carroll	5.37
Tallapoosa (Upper)	City of Temple	Carroll	0.26
Tallapoosa (Upper)	City of Villa Rica	Carroll	0.58
Tallapoosa (Upper)	Carroll County Water System	Carroll	4.08

Table 4. M&I surface water withdrawals in the ACT Basin (Georgia)

ACT subbasin	нис	Public supply	Industrial	Irrigation	Livestock	Thermo- electric	Total, by Subbasin
Upper Coosa	03150105	2.12	0	3.10	0.40	0	5.62
Middle Coosa	03150106	33.24	65.83	7.91	0.87	142.68	250.53
Lower Coosa	03150107	10.96	0.89	5.10	0.35	812.32	829.62
Upper Tallapoosa	03150108	0.90	0	0.15	0.40	0	1.45
Middle Tallapoosa	03150109	19.09	0	0.52	0.32	0	19.93
Lower Tallapoosa	03150110	38.22	2.23	4.22	0.28	0	44.95
Upper Alabama	03150201	10.40	30.63	3.84	0.84	4.14	49.85
Cahaba	03150202	52.90	0	3.49	0.25	0	56.64
Middle Alabama	03150203	0	21.04	1.73	0.48	0	23.25
Lower Alabama	03150204	0	54.61	0.64	0.02	0	55.27
Total - By Use Catego	ory	167.83	175.23	30.70	4.21	959.14	1337.11

Table 5. Surface water use - ACT Basin (Alabama, 2005) (mgd)

Source: Hutson et al. 2009

Basin (subbasin)	(subbasin) Withdrawal by		Withdrawal (mgd)	
Coosa River Basin (Alal	pama)			
Coosa (Upper)	Centre Water Works & Sewer Board	Cherokee	1.19	
Coosa (Upper)	Piedmont Water Works & Sewer Board	Calhoun	0.93	
Coosa (Middle)	Jacksonville Water Works & Sewer Board	Calhoun	1.34	
Coosa (Middle)	Anniston Water Works & Sewer Board	Calhoun	0.08	
Coosa (Middle)	Fort Payne Water Works Board	DeKalb	8.10	
Coosa (Middle)	Goodyear Tire and Rubber Company	Etowah	9.87	
Coosa (Middle)	Gadsden Water Works & Sewer Board	Etowah	14.86	
Coosa (Middle)	Alabama Power Co – Gadsden Steam Plant	Etowah	142.68	
Coosa (Middle)	SIC 32 – Unnamed Stone, Glass, Clay, and/or Concrete Products	St. Clair	3.49	
Coosa (Middle)	Talladega/Shelby Water Treatment Plant	Talladega	6.44	
Coosa (Middle)	Talladega County Water Department	Talladega	0.81	
Coosa (Middle)	Talladega Water Works & Sewer Board	Talladega	1.62	
Coosa (Middle)	Bowater Newsprint, Coosa Pines Operation	Talladega	52.47	
Coosa (Lower)	Sylacauga Utilities Board	Talladega	3.25	
Coosa (Lower)	SIC 22 – Unnamed Textile	Talladega	0.89	
Coosa (Lower)	Goodwater Water Works & Sewer Board	Coosa	0.46	
Coosa (Lower)	Alabama Power Co – E.C. Gaston Plant	Shelby	812.32	
Coosa (Lower)	Clanton Waterworks & Sewer Board	Chilton	1.79	
Coosa (Lower)	Five Star Water Supply	Elmore	5.46	
Tallapoosa River Basin	(Alabama)			
Tallapoosa (Upper)	Heflin Water Works	Cleburne	0.51	
Tallapoosa (Upper)	Wedowee Gas, Water, and Sewer	Randolph	0.39	
Tallapoosa (Middle)	Roanoke Utilities Board	Randolph	1.29	
Tallapoosa (Middle)	Clay County Water Authority	Clay	1.87	
Tallapoosa (Middle)	Lafayette	Chambers	0.53	
Tallapoosa (Middle)	Central Elmore Water & Sewer Authority	Elmore	4.83	
Tallapoosa (Middle)	Alexander City Water Department	Tallapoosa	10.57	
Tallapoosa (Lower)	West Point Home, Inc	Lee	2.23	
Tallapoosa (Lower)	Opelika Water Works Board	Lee	2.61	
Tallapoosa (Lower)	Auburn Water Works Board	Lee	5.75	
Tallapoosa (Lower)	Tallassee	Tallapoosa	1.98	
Tallapoosa (Lower)	Tuskegee Utilities	Macon	2.71	
Tallapoosa (Lower)	Montgomery Water Works & Sewer Board	Montgomery	25.17	
Alabama River Basin		•	•	
Alabama (Upper)	Montgomery Water Works & Sewer Board	Montgomery	10.40	
Alabama (Upper)	International Paper	Autauga	30.63	
Alabama (Upper)	Southern Power Co – Plant E. B. Harris	Autauga	4.14	
Alabama (Cahaba)	Birmingham Water Works & Sewer Board	Shelby	52.90	
Alabama (Middle)	International Paper – Pine Hill	Wilcox	21.04	
Alabama (Lower)	Alabama River Pulp Company	Monroe	54.61	

Table 6. M&I surface water withdrawals in the ACT Basin (Alabama)

Source: Hutson et al. 2009

VI. – CONSTRAINTS

6-01. General. The availability of water resources in the ACT Basin is constrained by existing water supply storage contracts, Corps water control manuals, minimum flow requirements from Allatoona and Carters Dams, APC FERC licenses, Corps-APC Memorandum of Understanding, and industrial water quality flow needs. Existing water supply storage contracts do not include the use of the inactive storage pool and would require developing and implementing an emergency storage contract in order to access this water resource. Each Corps project has a water control manual that specifies operational requirements for varying basin conditions and requires a deviation approval to operate outside the parameters established by the manual. The Allatoona Project has a minimum flow release requirement of 240 cfs for downstream purposes. The Carters Project has a seasonally varying minimum flow release requirement that ranges from 250 – 865 cfs during normal conditions and a minimum of 240 cfs during low flow conditions. The APC projects are operated under FERC licenses which define specific operational requirements for each project and require approval from FERC and possibly the Corps and State agencies before any revised operations could be implemented. The Corps and APC projects are also operated under the rules and regulations found in the Corps-APC Memorandum of Understanding, which describes operational requirements for flood conditions and navigation within the ACT Basin. Some industrial NPDES permits within the ACT Basin have water quality discharge limitations which are impacted by the volume of water flow in the river.

VII – DROUGHT MANAGEMENT PLAN

7-01. <u>General</u>. The Drought Contingency Plan (DCP) for the ACT Basin implements drought conservation actions on the basis of composite system storage, state line flows, and basin inflow as triggers to drive drought response actions. The DCP also recognizes that a basin-wide drought plan must incorporate variable hydropower generation requirements from its headwater projects in Georgia (Allatoona Dam and Carters Dam), a reduction in the level of navigation service provided on the Alabama River as storage across the basin declines, and that environmental flow requirements must still be met to the maximum extent practicable. The ACT basin-wide drought plan is composed of three components — Headwater regulation at Allatoona Lake and Carters Lake in Georgia; Regulation at APC projects on the Coosa and Tallapoosa Rivers; and Downstream Alabama River regulation at Corps projects downstream of Montgomery, Alabama.

A. **Headwater Regulation for Drought at Allatoona Lake and Carters Lake**. Drought regulation at Allatoona Lake and Carters Lake consists of progressively reduced hydropower generation as pool levels decline in accordance with the conservation storage action zones established in the projects' water control plans. For instance, when Allatoona Lake is operating in normal conditions (Conservation storage Zone 1); hydropower generation typically ranges from 0 to 4 hours per day. However, as the pool drops to lower action zones during drought conditions, generation could be reduced to 0 to 2 hours per day. As Carters Lake pool level might drop into a conservation storage Zone 2, seasonal varying minimum target flows would be reduced to 240 cfs. The water control manual for each project describes the drought water control regulation plan in more detail.

B. **Drought Regulation at APC Projects on the Coosa, Tallapoosa, and Alabama River**. Regulation guidelines for the Coosa, Tallapoosa, and Alabama Rivers have been defined in a drought regulation matrix (Table 7) on the basis of a Drought Intensity Level (DIL). The DIL is a drought indicator, ranging from one to three. The DIL is determined on the basis of three basin drought criteria (or triggers). A DIL from 1 to 3 indicates some level of drought conditions. The DIL increases as more of the drought indicator thresholds (or triggers) occur. The drought regulation matrix defines minimum average daily flow requirements on a monthly basis for the Coosa, Tallapoosa, and Alabama Rivers as a function of the DIL and time of year. The combined occurrences of the drought triggers determine the DIL. Three intensity levels for drought operations are applicable to APC projects.

DIL 1 — (moderate drought) 1 of 3 triggers occur

DIL 2 — (severe drought) 2 of 3 triggers occur

DIL 3 — (exceptional drought) all 3 triggers occur

(1) <u>Drought Indicators</u>. The indicators used to determine drought intensity include the following:

1. Low basin inflow. The total basin inflow needed is the sum of the total filling volume plus 4,640 cfs. The total filling volume is defined as the volume of water required to return the pool to the top of the conservation guide curve and is calculated using the area-capacity tables for each project. Table 8 lists the monthly low basin inflow criteria. The basin inflow value is computed daily and checked on the first and third Tuesday of the month. If computed basin inflow is less than the value required, the low basin inflow indicator is triggered. The basin inflow is total flow above the APC projects excluding Allatoona Lake and Carters Lake. It is the sum of local flows, minus lake evaporation and diversions. Figure 11 illustrates the local inflows to the Coosa and Tallapoosa Basins. The basin inflow computation differs from the navigation basin inflow because it does not include releases from Allatoona Lake and Carters Lake. The intent is to capture the hydrologic condition across APC projects in the Coosa and Tallapoosa Basins.

	Jan	Feb	Mar	Apr	Мау		Jun	Jul	Aug	Sep	Oct	Nov	Dec
evel e ^a		Normal Operations											
rought Lev Response ^a					DIL 1: Low Ba	asin Inflows	or Low Compo	osite or Low S	State Line Fl	ow			
ulgu				DIL 2: D	IL 1 criteria +	(Low Basir	Inflows or Low	v Composite o	or Low State	Line Flow)			
ā	DIL 3: Low Basin Inflows + Low Composite + Low State Line Flow												
۹ ۸ و	Normal	Operation: 2	,000 cfs	4,000	(8,000)	4,000) – 2,000			Normal Oper	ation: 2,000 c	ofs	
Coosa River Flow ^b	Jor	rdan 2,000 +/	-cfs		4,000 +/- cfs		6/15 Linear Ramp down	Jor	dan 2,000 +/	/-cfs	Jo	ordan 2,000 +	/-cfs
sa Riv	Jordan	1,600 to 2,00)0 +/-cfs	:	2,500 +/- cfs		6/15 Linear Ramp down	Jordan 2,000 +/-cfs		Jordan	n 1,600 to 2,0	00 +/-cfs	
Coos	Jor	rdan 1,600 +/	-cfs	J	Jordan 1,600 t	:0 2,000 +/-	cfs	Jordan 2,000 +/-cfs				00 to 2,000 cfs	Jordan 1,600 +/-cfs
ər	Normal Operations: 1200 cfs												
Tallapoosa River Flow ^c	-	Greater of 1/2 Gage (Thurlo ct						1/2 Yates Inflow		ow			
apo FI		Thurlow La	ake 350 cfs				1/2 Yate	es Inflow			Thurlow Lake 350 cfs		50 cfs
Talla) cfs at Monte Lake release	gomery WTP e 350 cfs)	Thurlow Lake 350 cfs			Maintain 400 cfs at Montgomery WT (Thurlow Lake release 350 cfs)				
er					No	mal Opera	tion: Navigatior	n or 4,640 cfs	flow		•		
Riv	4,20	00 cfs (10% C	ut) - Montgo	mery			4,640 cfs - N	Nontgomery			Reduce: Full – 4,200 cfs		200 cfs
Alabama River Flow ^d	3,700 cfs (20% Cut) - Montgomery 4,200 cfs (10% Cut) - Montgomery						Reduce: 4,200 cfs-> 3,700 cfs Montgomery (1 week ramp)						
	2,000 cfs 3,700 cfs 4,200 cfs (10% Cut) - M Montgomery				Iontgomery		: 4,200 cfs -> omery (1 mor						
r ve			N	ormal Operat	tions: Elevatio	ons follow G	Guide Curves as	s prescribed i	n License (N	leasured in F	eet)		
Curve ation					Corps Devi	ations: As I	Needed; FERC	Deviation for	Lake Martir	ו ו			
Guide Curv Elevation					Corps Devi	ations: As I	Needed; FERC	Deviation for	Lake Martir	1			
е Сп					Corps Devi	ations: As I	Needed; FERC	Deviation for	Lake Martir	า			

Table 7. ACT Basin Drought Regulation Plan Matrix

a. Note these are based on flows that will be exceeded when possible.
b. Jordan flows are based on a continuous +/- 5% of target flow.
c. Thurlow Lake flows are based on continuous +/- 5% of target flow: flows are reset on noon each Tuesday based on the prior day's daily average at Heflin or Yates.
d. Alabama River flows are 7-Day Average Flow.

Month	Coosa Filling Volume	Tallapoosa Filling Volume	Total Filling Volume	Minimum JBT Target Flow	Required Basin Inflow				
Jan	0	0	0	4,640	4640				
Feb	0	120	120	4,640	4760				
Mar	643	2900	3543	4,640	8183				
Apr	1606	2585	4191	4,640	8831				
May	5	0	5	4,640	4645				
Jun	0	0	0	4,640	4640				
Jul	0	0	0	4,640	4640				
Aug	0	0	0	4,640	4640				
Sep	0	-1304	-1304	4,640	3336				
Oct	-1167	-2132	-3299	4,640	1341				
Nov	-1067	-2186	-3253	4,640	1387				
Dec	-3	0	-3	4,640	4637				

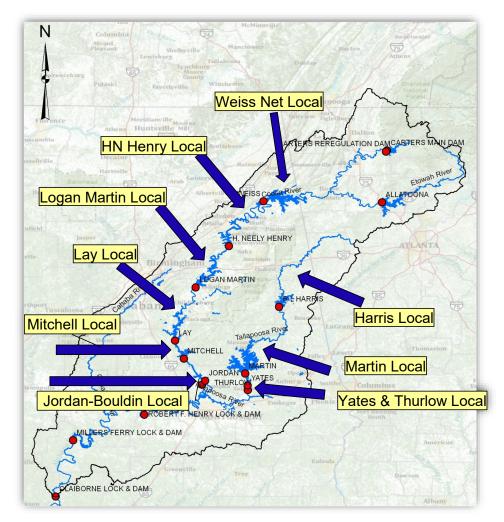


Figure 11. ACT Basin Inflows

2. Low composite conservation storage. Low composite conservation storage occurs when the APC projects' composite conservation storage is less than or equal to the storage available within the drought contingency curves for the APC reservoirs. Composite conservation storage is the sum of the amounts of storage available at the current elevation for each reservoir down to the drought contingency curve at each APC major storage project. The reservoirs considered for the trigger are R.L. Harris Lake, H. Neely Henry Lake, Logan Martin Lake, Lake Martin, and Weiss Lake. Figure 12 plots the APC composite zones. Figure 13 plots the APC low composite conservation storage trigger. If the actual active composite conservation storage indicator is triggered. That computation is performed on the first and third Tuesday of each month and is considered along with the low state line flow trigger and basin inflow trigger.

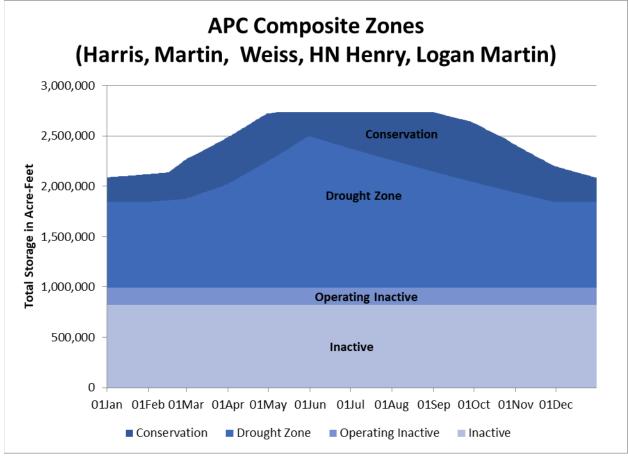


Figure 12. APC Composite Zones

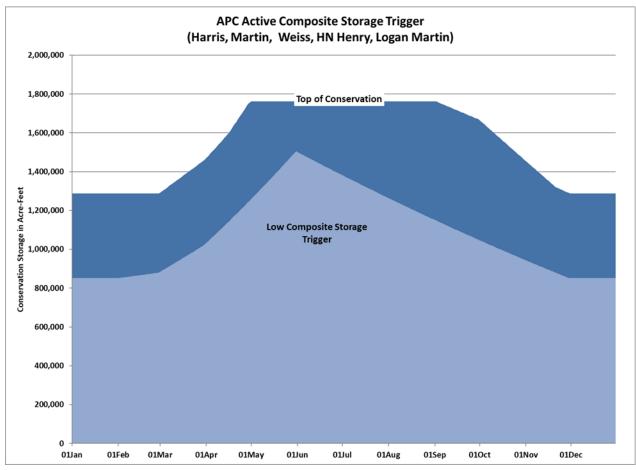


Figure 13. APC Low Composite Conservation Storage Drought Trigger

3. Low state line flow. A low state line flow trigger occurs when the Mayo's Bar USGS gage measures a flow below the monthly historical 7Q10 flow. The 7Q10 flow is defined as the lowest flow over a 7-day period that would occur once in 10 years. Table 9 lists the Mayo's Bar 7Q10 value for each month (determined from observed flows from 1949 – 2006). The lowest 7-day average flow over the past 14 days is computed and checked at the first and third Tuesday of the month. If the lowest 7-day average value is less than the Mayo's Bar 7Q10 value, the low state line flow indicator is triggered. If the result is greater than or equal to the trigger value from Table 9, the flow is considered normal, and the state line flow indicator is not triggered. The term state line flow is used in developing the drought management plan because of the proximity of the Mayo's Bar gage to the Alabama-Georgia state line flow is used only as a source of observed data for one of the three triggers and does not imply that flow targets exist at that geographic location. The ACT Basin drought matrix does not include or imply any Corps regulation that would result in water management decisions at Carters Lake or Allatoona Lake.

Mayo's Bar (7Q10 in cfs)
2,544
2,982
3,258
2,911
2,497
2,153
1,693
1,601
1,406
1,325
1,608
2,043

Table 9. State Line Flow Triggers

Note: Based on USGS Coosa River at Rome Gage (Mayo's Bar, USGS 02397000) observed flow from 1949 to 2006

(2) <u>Drought Regulation</u>. The DIL is computed on the first and third Tuesday of each month. Once a drought operation is triggered, the DIL can only recover from drought condition at a rate of one level per period. For example, as the system begins to recover from an exceptional drought with DIL 3, the DIL must be stepped incrementally back to zero to resume normal operations. In that case, even if the system triggers return to normal quickly, it will still take at least a month before normal operations can resume - conditions can improve only to DIL 2 for the next 15 days, then DIL 1 for the next 15 days, before finally returning to normal operating conditions.

For normal operations, the matrix shows a Coosa River flow between 2,000 cfs and 4,000 cfs with peaking periods up to 8,000 cfs occurring. The required flow on the Tallapoosa River is a constant 1,200 cfs throughout the year. The navigation flows on the Alabama River are applied to the APC projects. The required navigation depth on the Alabama River is subject to the basin inflow.

For DIL 1, the Coosa River flow varies from 2,000 cfs to 4,000 cfs. On the Tallapoosa River, the required flow is the greater of one-half of the inflow into Yates Lake or twice the Heflin USGS gage from January through April. For the remainder of the year, the required flow is one-half of Yates Lake inflow. The required flows on the Alabama River are reduced from the amounts required for DIL 0.

For DIL 2, the Coosa River flow varies from 1,600 cfs to 2,500 cfs. On the Tallapoosa River, the minimum is 350 cfs for part of the year and one-half of Yates Lake inflow for the remainder of the year. The requirement on the Alabama River is between 3,700 cfs and 4,200 cfs.

For DIL 3, the flows on the Coosa River range from 1,600 cfs to 2,000 cfs. A constant flow of 350 cfs on the Tallapoosa River is required. It is assumed an additional 50 cfs will occur between Thurlow Lake and the City of Montgomery water supply intake. Required flows on the Alabama River range from 2,000 cfs to 4,200 cfs

In addition to the flow regulation for drought conditions, the DIL affects the flow regulation to support navigation operations. Under normal operations, the APC projects are operated to

meet the needed navigation flow target or 4,640 cfs flow as defined in the navigation measure section. Once drought operations begin, flow regulation to support navigation operations is suspended.

7-02. <u>Extreme Drought Conditions</u>. An extreme drought condition exists when the remaining composite conservation storage is depleted, and additional emergency actions may be necessary. When conditions have worsened to this extent, utilization of the inactive storage must be considered. Such an occurrence would typically be contemplated in the second or third year of a drought. Inactive storage capacities have been identified for the two Federal projects with significant storage (Figures 14 and 15). The operational concept established for the extreme drought impact level and to be implemented when instituting the use of inactive storage is based on the following actions:

(1) Inactive storage availability is identified to meet specific critical water use needs within existing project authorizations.

(2) Emergency uses and users will be identified in accordance with emergency authorizations and through stakeholder coordination. Typical critical water use needs within the basin are associated with public health and safety.

(3) Weekly projections of the inactive storage water availability to meet the critical water uses in the ACT Basin will be utilized when making water control decisions regarding withdrawals and water releases from the Federal reservoirs.

(4) The inactive storage action zones will be developed and instituted as triggers to meet the identified priority water uses (releases will be restricted as storage decreases).

(5) Dam safety considerations will always remain the highest priority. The structural integrity of the dams due to static head limitations will be maintained.

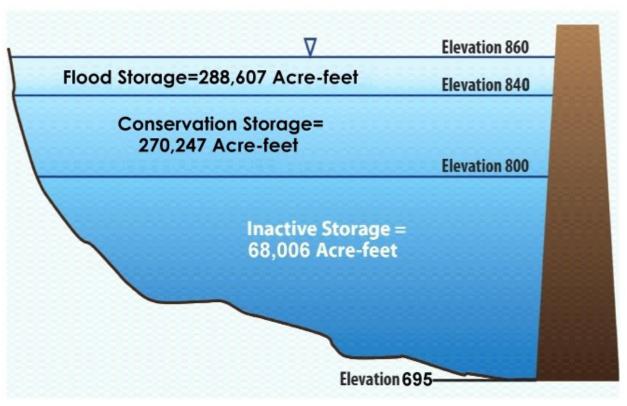


Figure 14. Storage in Allatoona Lake

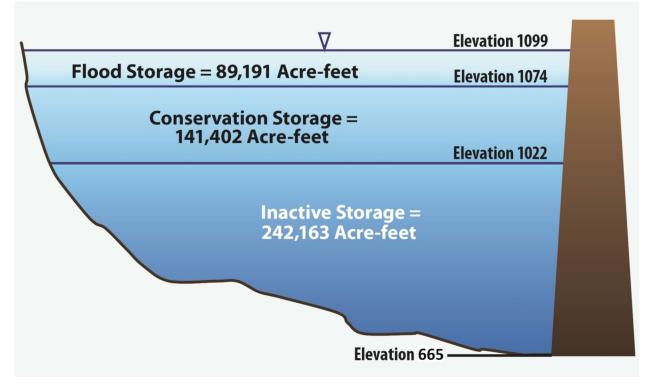


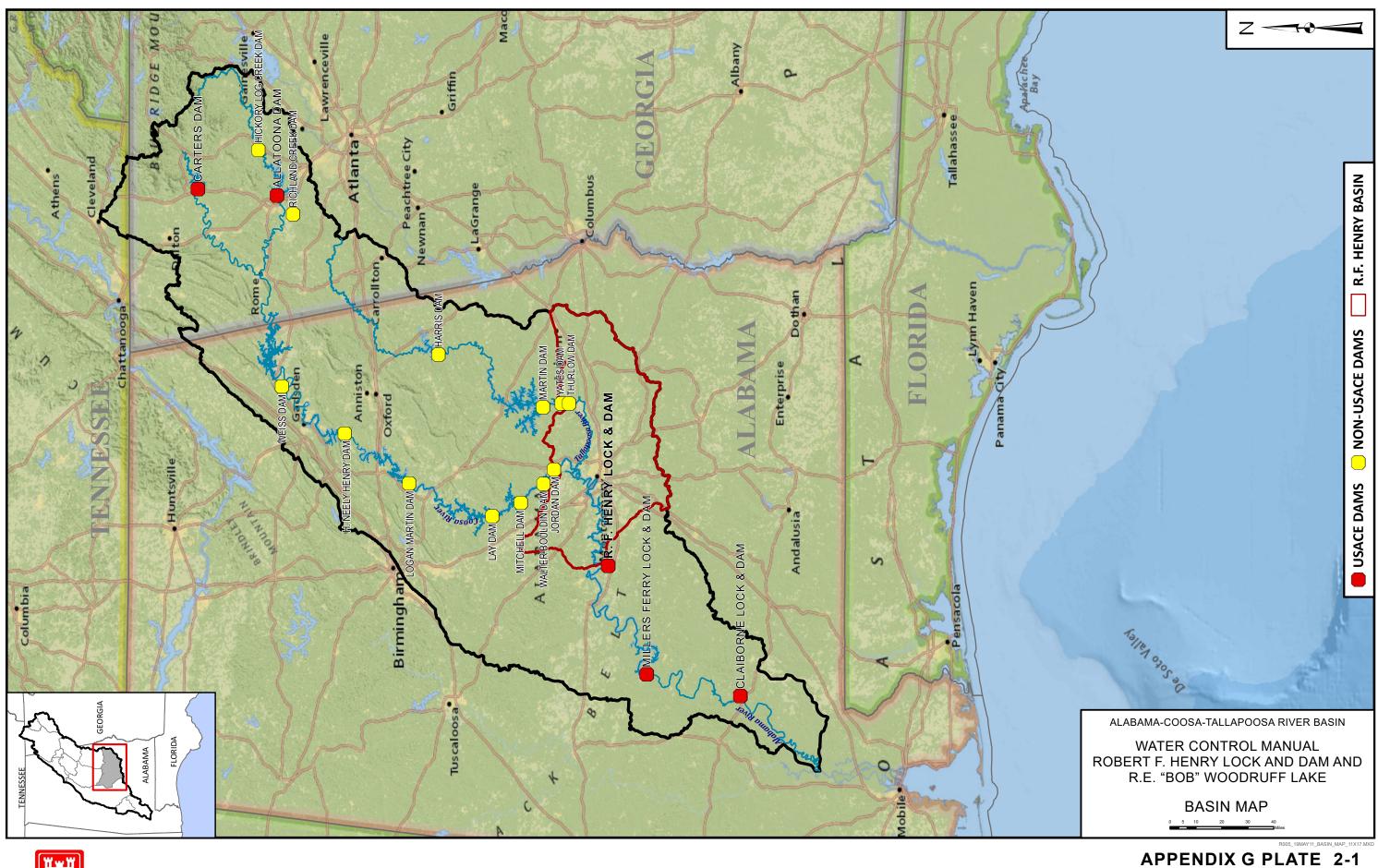
Figure 15. Storage in Carters Lake (excluding reregulation pool)

VIII – DROUGHT MANAGEMENT COORDINATION AND PROCEDURES

8-01. <u>USACE Coordination</u>. It is the responsibility of the Mobile District Water Management Section and APC to monitor climatological and hydrometeorological conditions at all times to make prudent water management decisions. The Water Management Section makes daily decisions and coordinates with APC every two weeks or more often if conditions warrant and with other district representatives from the various areas for which the river systems are operated -- hydropower, recreation, navigation, environmental, and others to exchange information concerning the operation of the river system. This coordination includes conducting weekly meetings with these other district elements. Daily water management decisions regarding water availability, lake level forecasts, and storage forecasts are determined using the information obtained along with current project and basin hydrometeorological data. A weekly District River System Status report is prepared that summarizes the conditions in each of the river basins. When conditions become evident that normal low flow conditions are worsening, the Water Management Section will elevate the district coordination to a heightened awareness. When drought conditions are imminent, Emergency Management representatives will be notified of the conditions and will be included in the regular coordination activities.

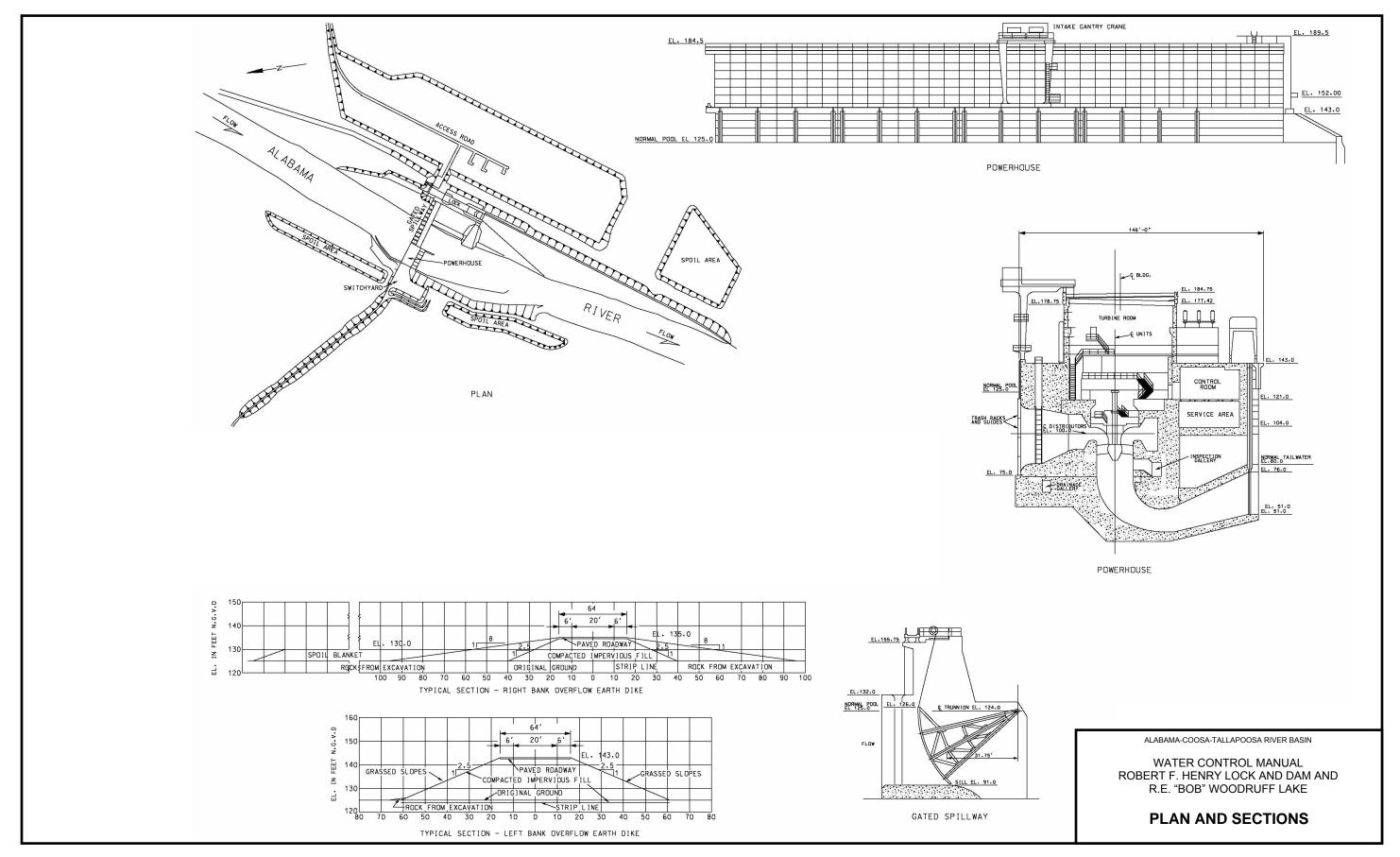
8-02. <u>Interagency Coordination</u>. The Water Management Section will support the environmental team regarding actions that require coordination with the U.S. Fish and Wildlife Service (USFWS) for monitoring threatened and endangered species and with the Environmental Protection Agency (EPA), Georgia Environmental Protection Division (GAEPD), and Alabama Department of Environmental Management (ADEM) regarding requests to lower minimum flow targets below Claiborne Dam.

8-03. <u>Public Information and Coordination</u>. When conditions determine that a change in the water control actions from normal regulation to drought regulation is imminent, it is important that various users of the system are notified so that any environmental or operational preparations can be completed prior to any impending reduction in reservoir discharges, river levels, and reservoir pool levels. In periods of severe drought within the ACT Basin it will be within the discretion of the Division Commander to approve the enactment of ACT Basin Water Management conference calls. The purposes of the calls are to share ongoing water management decisions with basin stakeholders and to receive stakeholder input regarding needs and potential impacts to users within the basin. Depending upon the severity of the drought conditions, the calls will be conducted at regular monthly or bi-weekly intervals. Should issues arise, more frequent calls would be implemented.

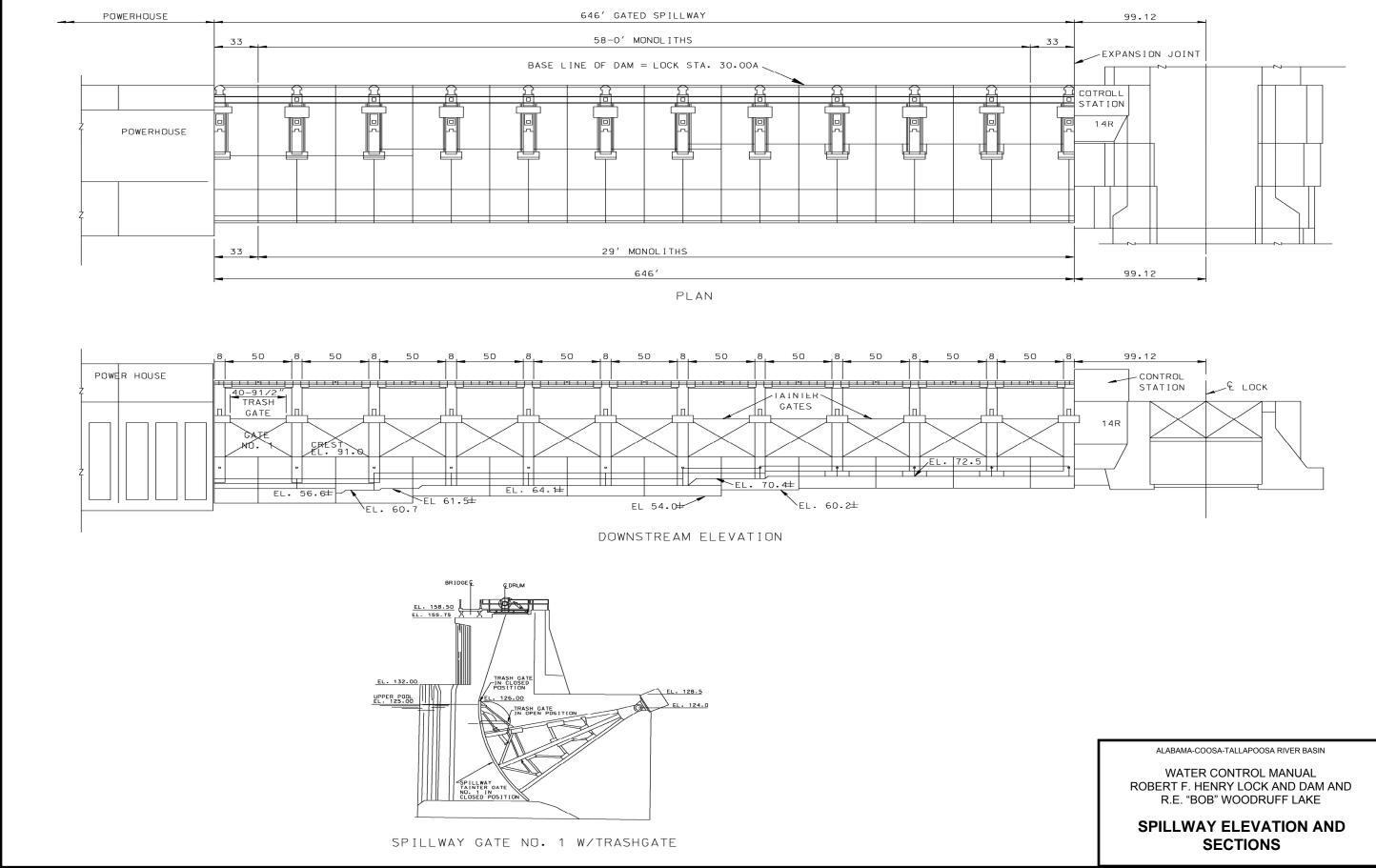

a. Local Press and Corps Bulletins. The local press consists of periodic publications in or near the ACT Basin. Montgomery, Columbus, and Atlanta have some of the larger daily papers. The papers often publish articles related to the rivers and streams. Their representatives have direct contact with the Corps through the Public Affairs Office. In addition, they can access the Corps Web pages for the latest project information. The Corps and the Mobile District publish e-newsletters regularly which are made available to the general public via email and postings on various websites. Complete, real-time information is available at the Mobile District's Water Management homepage https://www.sam.usace.army.mil/Missions/Civil-Works/Water-Management/. The Mobile District Public Affairs Office issues press releases as necessary to provide the public with information regarding Water Management issues and activities and also provides information via the Mobile District web site.

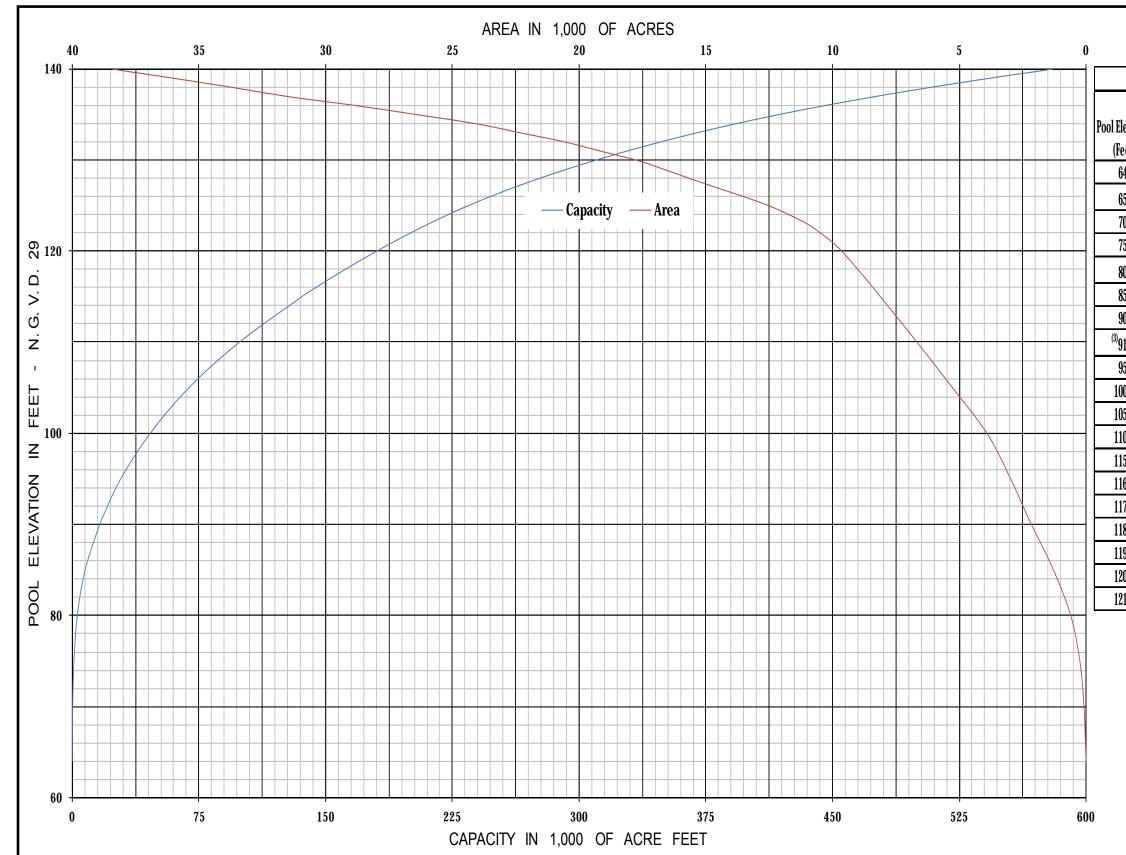
IX – REFERENCES

- Institute for Water Resources (IWR). 1991. National Study of Water Management During Drought A Research Assessment, U.S. Army Corps of Engineers, Water Resources Support Center, Institute for Water Resources, IWR Report 91-NDS-3.
- Institute for Water Resources (IWR). 1994. National Study of Water Management During Drought The Report to the U.S. Congress, U.S. Army Corps of Engineers, Water Resources Support Center, Institute for Water Resources, IWR Report 94-NDS-12.
- Institute for Water Resources (IWR). 1998. Water Supply Handbook, U.S. Army Corps, Water Resources Support Center, Institute for Water Resources, Revised IWR Report 96-PS-4.
- U.S. Army Corps of Engineers, (USACE). 1993. Development of Drought Contingency Plans, Washington, DC: CECW-EH-W Technical Letter No. 1110-2-335, (ETL 1110-2-335).
- U.S. Army Corps of Engineers, (USACE). January 2009. Western States Watershed Study: Drought.
- U. S. Geological Survey (USGS). 2000. *Droughts in Georgia*. Open-file report 00-380. U.S. Geological Survey, Atlanta, Georgia.


Intentionally left blank.

PLATES





U.S. ARMY

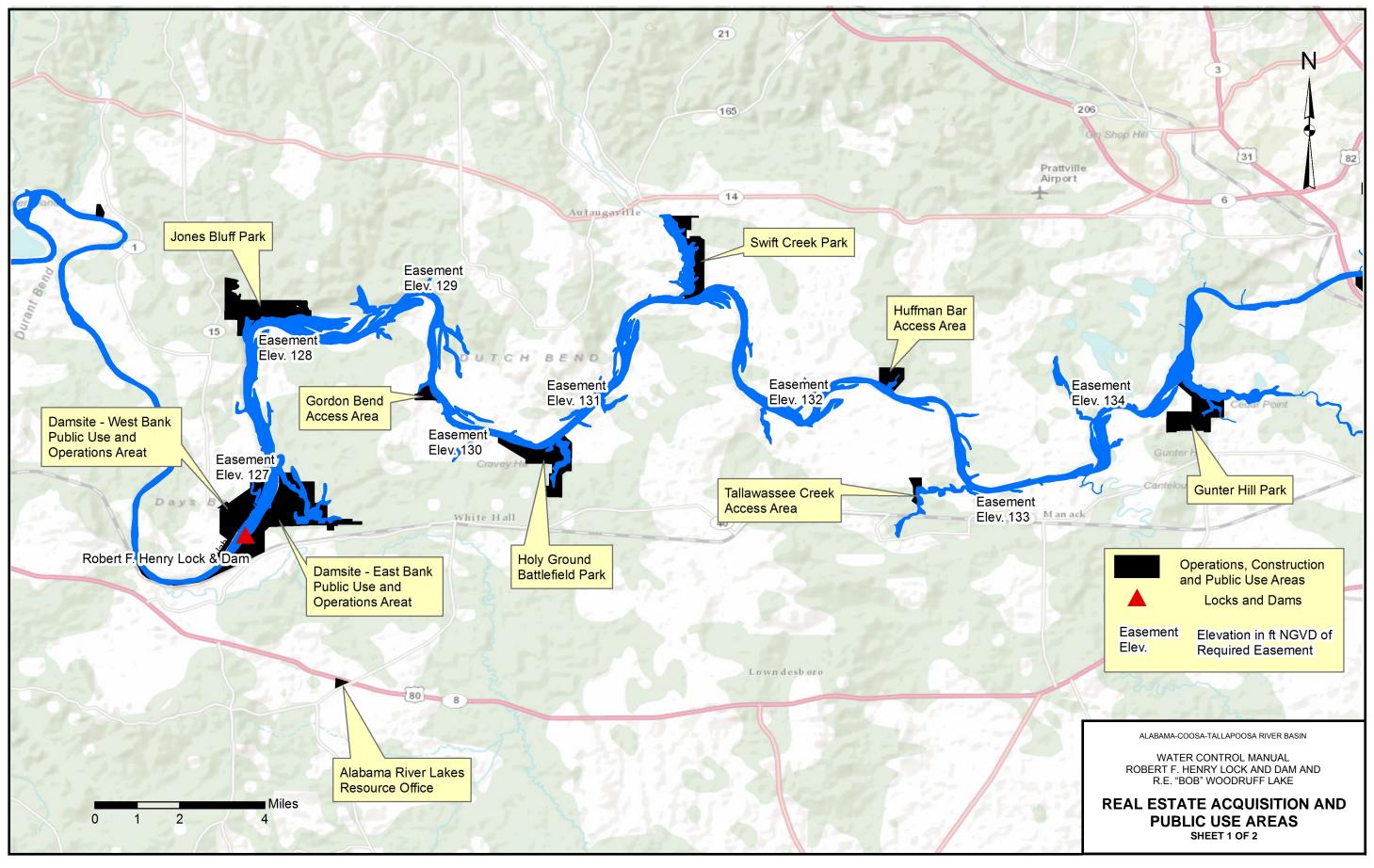
U.S. ARMY

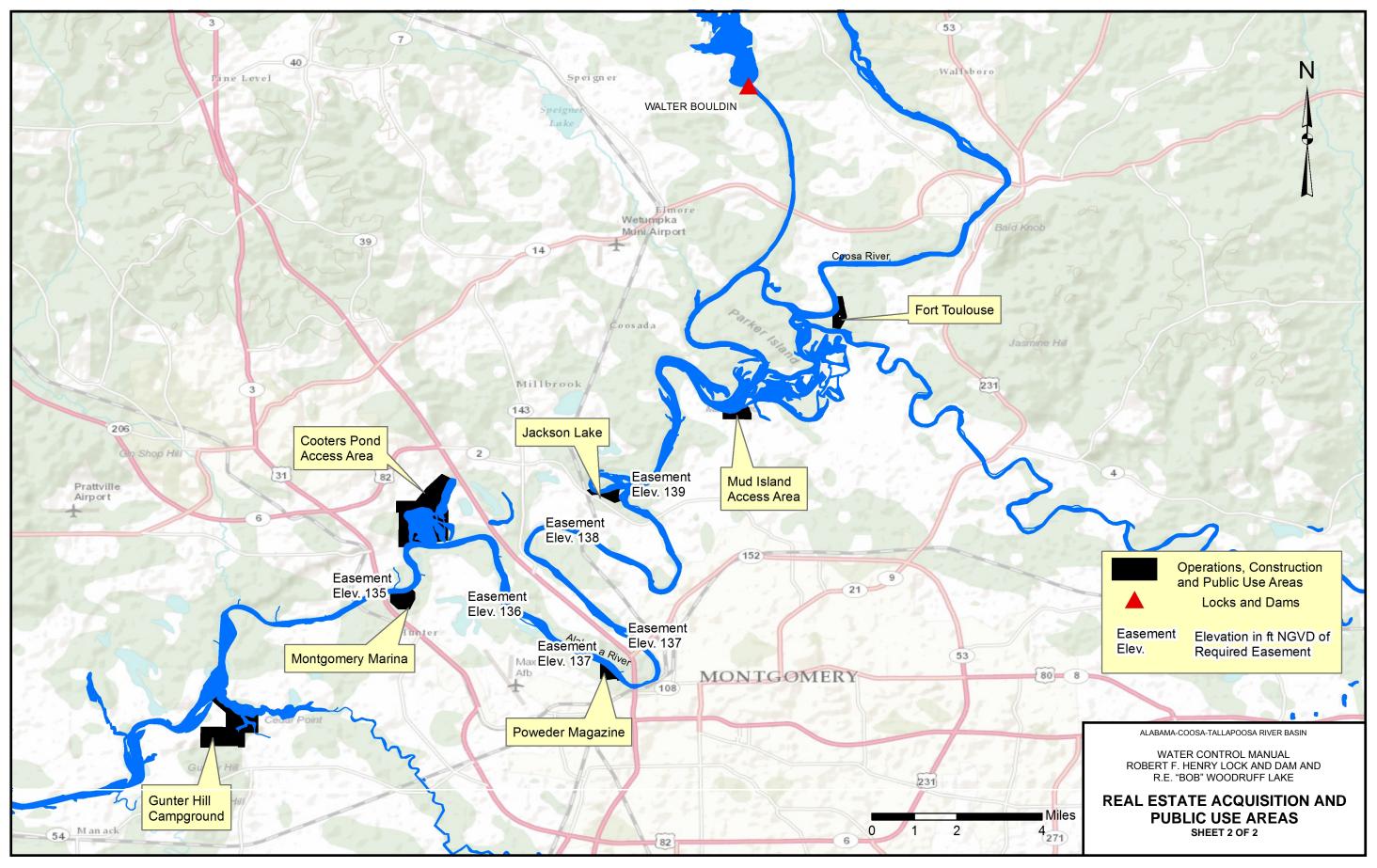
	AREA CAPACITY TABLE										
levation	Total Area	Total Storage	Pool Elevation	Total Area	Total Storage						
eet)	(Acres)	(Acre-Feet)	(Feet)	(Acres)	(Acre-Feet)						
64	0	0	122	10470	200030						
65	10	10	⁽²⁾ 123	10990	210760						
70	80	200	124	11700	222100						
75	240	970	125	12510	234210						
80	600	2970	^(1,4) 126	13500	247210						
85	1280	7550	127	14580	261250						
90	2150	16140	128	15640	276360						
91	2320	18370	129	16650	292510						
95	2970	28590	130	17730	309700						
00	3900	46040	131	19150	328140						
05	5260	68880	132	20550	347990						
10	6660	98740	133	22300	369410						
15	8110	135700	134	24050	392590						
16	8400	143950	135	26380	417800						
17	8690	152500	136	28800	445390						
18	9000	161340	137	31500	475470						
19	9310	170500	138	33700	507990						
20	9630	179970	139	36000	542840						
21	10010	189790	140	38400	580040						

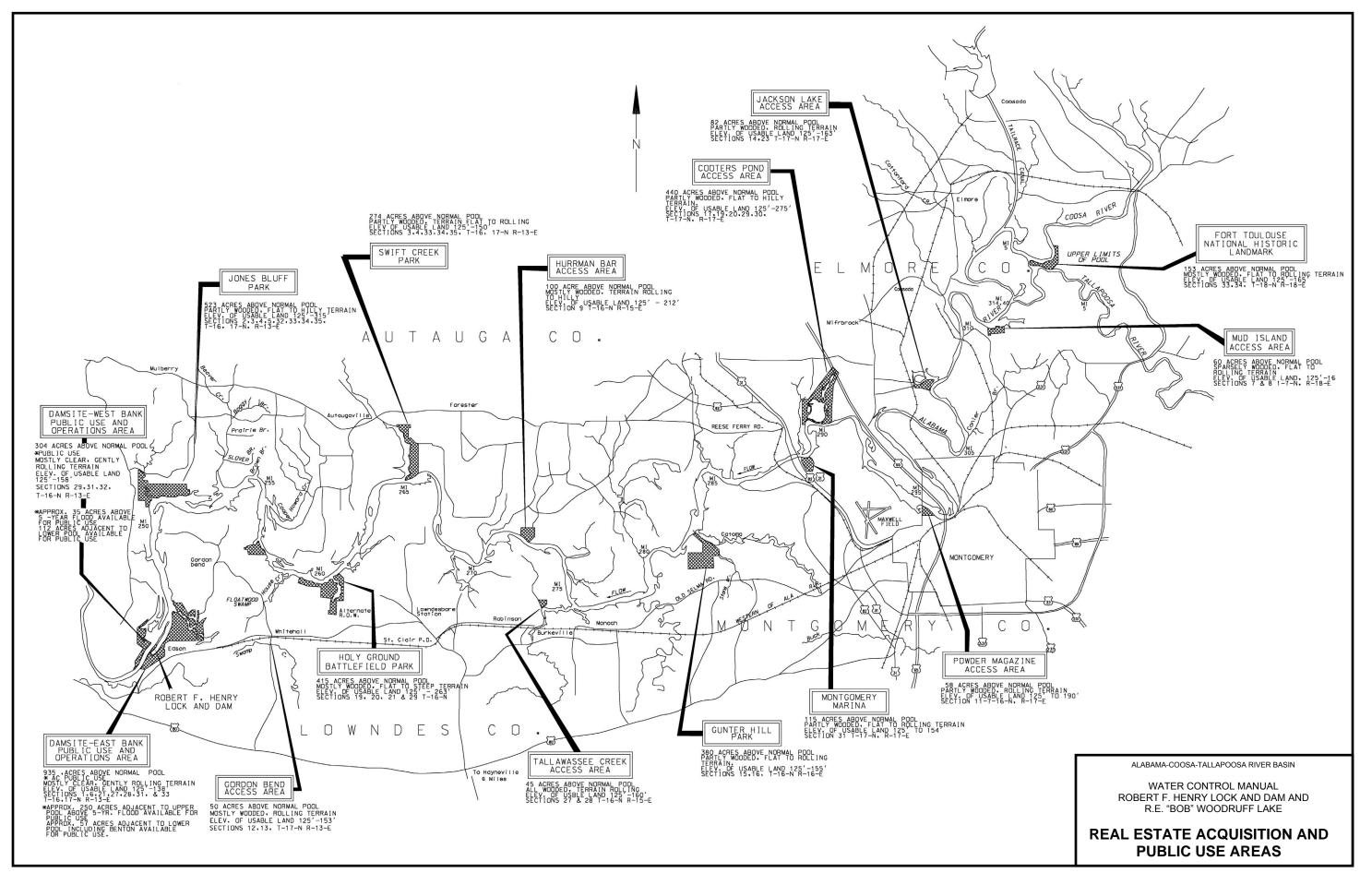
(2) Top of conservation

(3) Minimum conservation

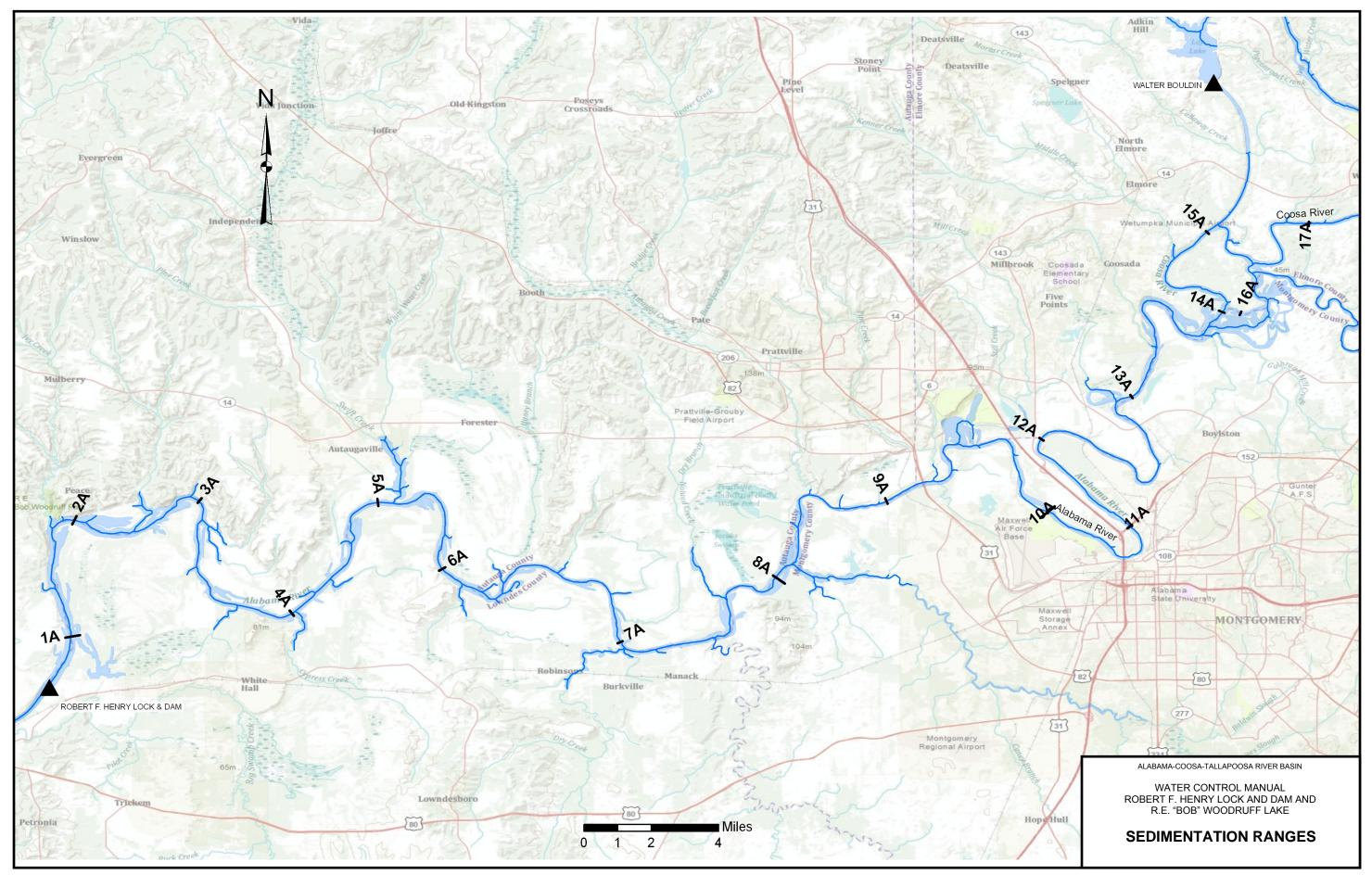
Willing the second seco

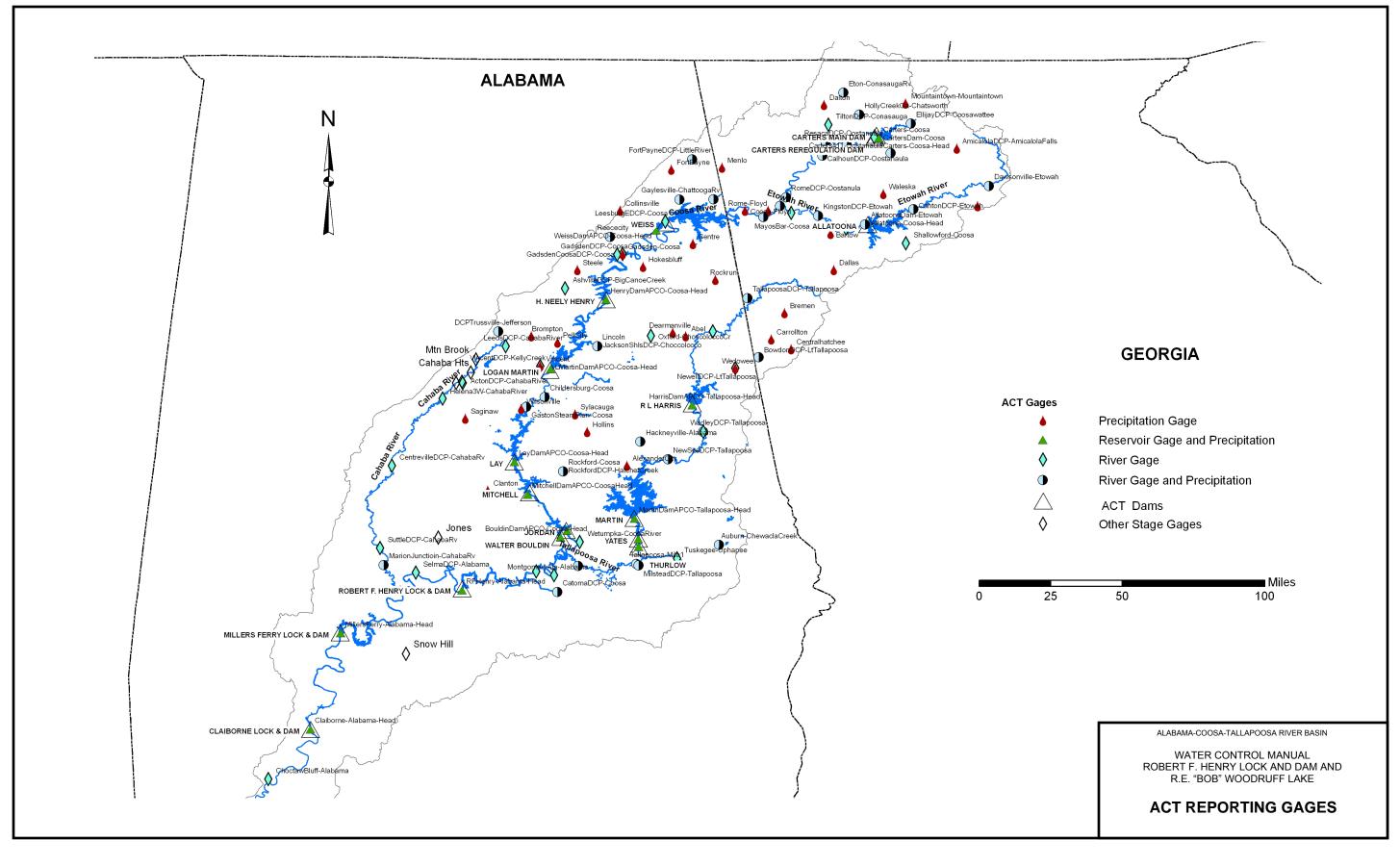

(4) Spillw ay crest elevation


⁽⁵⁾ Top of gates – closed position


ALABAMA-COOSA-TALLAPOOSA RIVER BASIN

WATER CONTROL MANUAL ROBERT F. HENRY LOCK AND DAM AND R.E. "BOB" WOODRUFF LAKE


AREA-CAPACITY CURVE



U. S. ARMY

Station:((09760	00) ROME,0				From Year=18	393 To Y	′ear=2009	Station:(01702 ESE	0) ROCKI	FORD 3			From Year=	1054 T	- Year=2000	Station:(01543	9) MILSTE				From Year=19	902 To Y	ear=2009
		Extrem	erature Ave	erages ar				ESE		Temper Extreme	ature Ave	ages and		1954 10	5 fear=2009		1	Tempera Extreme	ature Aver s	ages and	-		
	Monthly Daily Averages Extremes				Monthly	/ Averages			Daily Extremes				Monthly	Averages	1		Daily Extremes						
	Max.	Min.	Mean	High	Date	Low	Date		Max.	Min.	Mean	High	Date	Lov	w Date		Max.	Min.	Mean	High	Date	Low	Date
lonuoni	(F) 52.5	(F) 31.7	(F) 42.1	(F) 84	1/1/1917	(F) -9	1/21/1985		(F)	(F)	(F)	(F)		(F)	lanuar.	(F) 57.2	(F) 34	(F) 45.6	(F) 80	1/22/1999	(F) -3	1/21/1985
January February	52.5	33.3	44.9	04 85	2/25/1930	-9	2/13/1899	January	54.2	31.8	43.1	80	1/30/1957	-6	1/21/1985	January February	61.3	36.7	45.6	83	2/16/1989	-3	2/5/1996
March	65.2	40.1	44.9 52.7	92	3/22/1930	-5	3/07/1899	February	58.7	34.3	46.5	82	2/14/1962	6	2/17/1958	March	69.1	42.8	56	87	3/21/1982	15	3/3/1980
April	74.1	40.1	60.9	92	4/24/1925	23	4/1/1987	March	67.2	41	54.1	87	3/14/1955	11	3/3/1980	April	75.7	42.0	62.4	91	4/22/1987	27	4/1/1987
Мау	81.4	56.1	68.8	103	5/30/1914	33	5/2/1963	April	75.7	48.7	62.2	90	4/18/1955	24	4/1/1987	May	83.2	58.5	70.9	97	5/24/1996	41	5/1/1996
June	87.7	64.2	75.9	103	6/28/1931	42	6/1/1930	May	81.9	56.3	69.1	98	5/20/1962	33	5/13/1960	June	89	66.7	77.8	102	6/7/1985	45	6/1/1984
July	90.1	67.9	79	107	7/20/1913	51	7/1/1923	June	87.7	63.2	75.4	102	6/6/1985	37	6/3/1956	July	91.4	70.3	80.8	102	7/30/1986	57	7/2/2008
August	89.5	67.2	78.3	105	8/16/2007	51	8/31/1946	July	89.6	66.8	78.2	103	7/13/1980	50	7/6/1972	August	91.1	69.3	80.2	107	8/18/2007	56	8/29/1992
September	84.7	61.1	72.9	103	9/5/1925	32	9/30/1967	August	89.3	66.1	77.7	107	8/7/1956	49	8/30/1968	September	86.4	63.4	75.1	107	9/17/1980	38	9/22/1983
October	75.2	48.6	62	107	10/31/1925	23	10/30/1910	September	84.9	61.4	73.1	101	9/4/1954	37		October	77.1	51.2	64.2	93	10/8/1990	28	10/29/2001
November	63.2	38.8	51	87	11/2/1961	4	11/25/1950	October	75.7	49.9	62.8	98	10/5/1954	23		November	68.6	42.6	55.6	88	11/1/1984	20	11/30/1979
December	54	33	43.6	80	12/7/1951	-2	12/25/1983	November	65.8	40.8	53.3	87	11/1/1961	12		December	59.1	35.9	47.5	81	12/3/1982	7	12/24/1989
December				00	12/11/001	-2	12/20/1900	December	57.2	34.2	45.7	79	12/13/1971	-4	12/13/1962	December	55.1		1.5		12/0/1302	'	1212711303
Annual	72.8	49.1	61	95.8	10/31/1905	-9	1/21/1985								1	Annual	75.8	51.7	63.8	107	8/18/2007	-3	1/21/1985
Annual	72.0	40.1	01	55.0	10/01/1000	-0	1/21/1000	Annual	74	49.5	61.8	107	8/7/1956	-6	1/21/1985	Annual	70.0	51.7	00.0	107	0/10/2007		1/2 1/ 1000
Station:(091640					From Year=19	04 To Y	ear=2009	Station:(01512								Station:(01315	4) GADSD	EN STEA	M				
Station:(091640) CARROLLTON From Year=1904 To Year=2009 Temperature Averages and Daily							NE		IN JUNCI	ION 2		From Year=1	950 To	Year=2009	PLANT					From Year=19	953 To Y	ear=2009	
	ł	Extremes			Daily					Tempera Extremes	ture Avera	ges and I	Daily				Monthly	Tempera	ture Avera	ages and	Daily Extremes Daily		
	Monthly Av	/erages			Extremes				Monthly	Extremes	>		Daily				Average	s			Extremes		
	Max.	Min.	Mean	High	Date	Low	Date		Average	S			Extremes				Max.	Min.	Mean	High	Date	Low	Date
	(F)	(F)	(F)	(F)		(F)			Max.	Min.	Mean	High	Date	Low	Date		(F)	(F)	(F)	(F)		(F)	
January	53.3	31.7	42.6	81	1/12/1949	-9	1/21/1985		(F)	(F)	(F)	(F)		(F)		January	51.1	30.7	40.9	76	1/29/1975	-6	1/20/1985
February	57.2	33.7	45.5	80	2/16/1954	2	2/14/1905	January	55.9	33.8	44.8	88	1/4/1965	-1	1/21/1985	February	56.1	33.7	44.9	82	2/13/1962	1	2/1/1966
March	65.5	39.9	52.7	93	3/12/1955	8	3/4/1943	February	60.2	36.7	48.5	85	2/13/1962	7	2/3/1951	March	65	40.6	52.8	88	3/11/1974	11	3/5/1960
April	74.1	47.3	60.7	92	4/24/1965	24	4/1/1987	March	67.9	43.5	55.7	87	3/25/1954	14	3/3/1980	April	74.4	48.9	61.7	91	4/18/1955	22	4/4/1987
Мау	81.1	55.6	68.3	97	5/21/1941	30	5/9/1984	April	75.9	50.8	63.3	92	4/19/2006	30	4/7/1950	Мау	81.3	57.3	69.3	99	5/24/1970	33	5/13/1960
June	86.7	63	74.9	101	6/19/1944	36	6/6/1974	May	83.1	59.4	71.3	97	5/31/1951	39	5/4/1971	June	87.4	65.1	76.2	102	6/27/1954	42	6/3/1956
July	88.8	66.8	77.8	103	7/13/1980	49	7/19/1999	June	89	66.6	77.8	104	6/28/1954	40	6/1/1984	July	90.3	69.1	79.7	103	7/1/1954	52	7/11/1963
August	88.1	65.9	77	102	8/21/1983	48	8/29/1968	July	91.4	69.7	80.5	108	7/25/1952	52	7/16/1967	August	90.1	68.1	79.1	105	8/16/1954	52	8/31/1954
September	82.9	60.2	71.6	100	9/1/1951	32	9/30/1967	August	90.9	69	79.9	106	8/28/1954	56	8/22/1956	September	84.5	62	73.2	102	9/3/1954	33	9/30/1967
October	73.8	48.2	61	97	10/5/1954	23	10/31/1954	September	86.2	63.4	74.8	102	9/5/1954	36	9/30/1967	October	74.5	49.6	62.1	96	10/5/1954	23	10/30/1954
November	64.1	38.9	51.4	86	11/2/1974	2	11/25/1950	October	76.9	51.2	64.1	99	10/5/1954	23	10/30/1952	November	63.6	40	51.8	87	11/1/2000	14	11/24/1970
December	55.3	33.2	44.2	81	12/21/1971	0	12/13/1962	November	67	41.3	54.1	89	11/2/1961	11	11/25/1950	December	54.7	33.4	44	78	12/3/1982	1	12/13/1962
								December	58.4	35.4	46.9	83	12/9/1978	0	12/26/1983				. <u> </u>				_
Annual	72.6	48.7	60.6	103	7/13/1980	-9	1/21/1985				-0.0	00	1210/1010		12,20,1000	Annual	72.7	49.9	61.3	105	8/16/1954	-6	1/20/1985
								Annual	75.2	51.7	63.5	108	7/25/1952	-1	1/21/1985					ALABAMA-0	COOSA-TALLAPOOS	SA RIVER B	ASIN
								Annual	10.2	51.7	00.0	100	112011002	I	1/21/1305					DBERT F. R.E. "I	ER CONTROL I HENRY LOCK 30B" WOODRU	AND DA JFF LAKI	M AND E
																			BASI		PERATUR		

CORPS OF ENGINEERS

Station:(0976			From Year=1893 To Year=2009							
		Precipit	ation Ave	erages a	nd Daily	Extreme	es			
			Month	y Averag	jes	1 Day Maximum				
	Mean	High	Year	Low	Year		Date			
	(in.)	(in.)		(in.)		(in.)				
January	4.99	12.42	1947	0.85	1981	4.65	1/16/1954			
February	5.09	13.45	1903	0.74	1906	5.3	2//1921			
March	5.97	17.98	1980	1.07	1918	6.22	3/26/1901			
April	4.54	13.6	1979	0.3	1915	4.3	4/5/1957			
May	3.98	11.33	2003	0.22	2007	2.99	5/3/1964			
June	4.31	10.85	1989	0.23	1988	3.31	6/6/1930			
July	4.84	14.76	1916	0.87	1960	4.05	7/12/1999			
August	4.19	14.54	1992	0.49	1987	4.92	8/22/1992			
September	3.51	11.33	1957	0	1897	4.95	9/25/1997			
October	2.96	10.37	1995	0	1938	6.67	10/26/1997			
November	3.74	16.26	1948	0.36	1924	5.58	11/19/1906			
December	4.82	16.47	1932	0.58	1980	5.96	12/12/1961			
Annual	52.93	77.65	1932	28.71	2007	6.67	10/26/1997			

Station:(0916	640) CARR	OLLTON			From Year=1904 To Year=2009						
	Precipitation Averages and Daily Extremes										
			Month	y Averag	jes	1 Day	/ Maximum				
	Mean	High	Year	Low	Year	Date					
	(in.)	(in.)		(in.)		(in.)					
January	4.75	13.11	1972	0.84	1981	3.96	5/27/1996				
February	4.91	11.85	1961	0.73	1978	5.65	2/3/1982				
March	5.82	14	1976	0.6	1907	5.34	3/16/1956				
April	4.43	13.71	1979	0.14	1986	4.55	4/5/1957				
May	4.11	11.37	2003	0.58	1941	6.23	5/27/1981				
June	3.94	10.13	2003	0.24	2009	4.65	6/1/1979				
July	4.88	13.66	2005	0.18	1952	4.8	7/21/1958				
August	3.5	10.28	1960	0.26	1968	4.5	8/17/1939				
September	3.53	12.47	2002	0	1904	5.58	9/22/2002				
October	2.86	11.04	1995	0	1904	4.52	10/5/1995				
November	3.98	18.41	1948	0.48	1939	4.72	11/15/2006				
December	4.57	13.28	1961	0.8	1979	3.47	12/31/1973				
Annual	51.28	67.8	1982	30.48	207	6.23	5/27/1981				

Station:(0170	020) ROCK			From Year=1904 To Year=2009					
		Precipita	ation Ave	Averages and Daily Extremes					
			Month	y Averag	jes	1 Day Maximum			
	Mean	High	Year	Low	Year	Date			
	(in.)	(in.)		(in.)		(in.)			
January	5.3	13.8	1972	0.27	1986	4.7	1/26/1976		
February	5.59	13.9	1961	1.73	1968	4.23	2/10/1981		
March	6.62	13.81	1980	0.73	2007	7.04	3/16/1990		
April	5.15	14.49	1964	0.26	1986	6	4/5/1957		
May	4.31	10.38	1973	0.15	1965	3.68	5/8/1973		
June	4.02	10.4	1989	0.1	1988	3.84	6/19/1989		
July	5.98	12.85	1975	2.02	1983	4.45	7/29/2009		
August	4.21	10.57	2008	0.42	1988	4.3	8/2/1984		
September	4.1	14.78	1988	0.22	1987	6.36	9/16/1988		
October	2.88	8.93	1970	0	1963	3.48	10/10/1970		
November	4.12	10.37	1986	0.91	1969	4.7	11/15/2006		
December	5.01	17.05	1961	1.05	1980	5.9	12/10/1961		
Annual	57.3	86.01	1975	31.14	2007	7.04	3/16/1990		

Station:(015	Station:(015121) MARION JUNCTION 2 NE From Year=1950 To Year=200 Precipitation Averages and Daily Extremes										
		1 Toolpia	Month								
	Mean	High	Year	Low	Year	Date					
	(in.)	(in.)		(in.)		(in.)					
January	5.04	12.4	1972	1.44	1954	4.55	1/25/1990				
February	4.83	14.54	1961	0.88	1950	4.4	2/25/2001				
March	5.98	12.98	1976	0.9	2004	6.4	3/16/1990				
April	4.87	13.21	1964	0.24	1986	7.63	4/6/1964				
Мау	3.78	8.54	1978	0.11	2007	4	5/28/1997				
June	4.28	12.47	1997	0.72	1986	4.68	6/30/1997				
July	4.93	13.27	2005	0.37	1951	4.37	7/12/2005				
August	3.76	10.42	2008	0.19	1957	3.79	8/2/2009				
September	3.66	9.12	2002	0.17	2008	4.9	9/14/1963				
October	2.84	9.1	1959	0	1963	4.32	10/5/1995				
November	3.93	13.15	1986	0.69	1950	5.15	11/15/2006				
December	5.14	17.15	1961	0.98	1980	4.82	12/10/1961				
Annual	53.04	76.31	61	27.43	54	7.63	4/6/1964				

Annual

January February March April May June July August September October November December

Station:(015439) MILSTEAD

January February March April May June July August September October November December

Annual

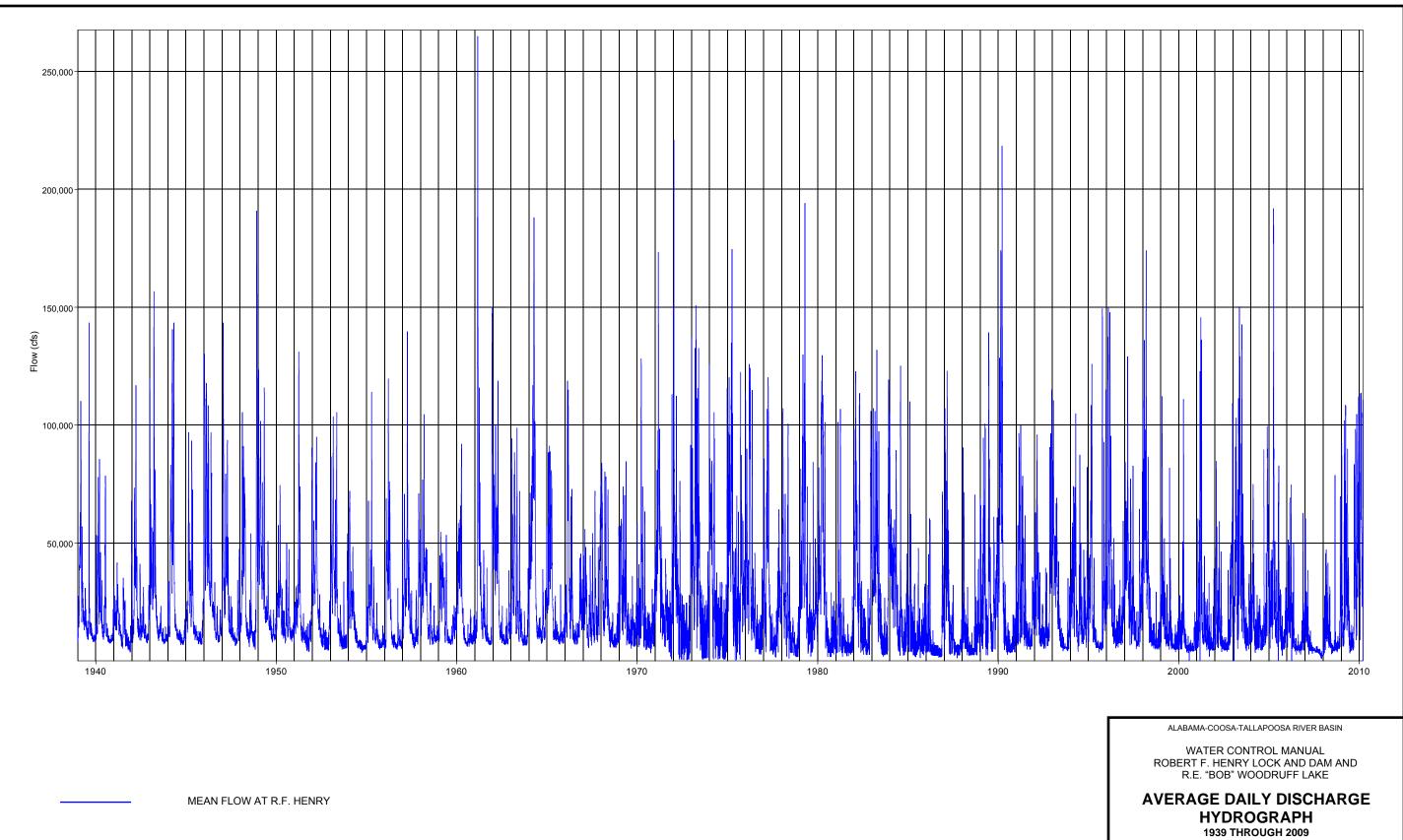
APENDIX G PLATE 4-4

WATER CONTROL MANUAL ROBERT F. HENRY LOCK AND DAM AND R.E. "BOB" WOODRUFF LAKE

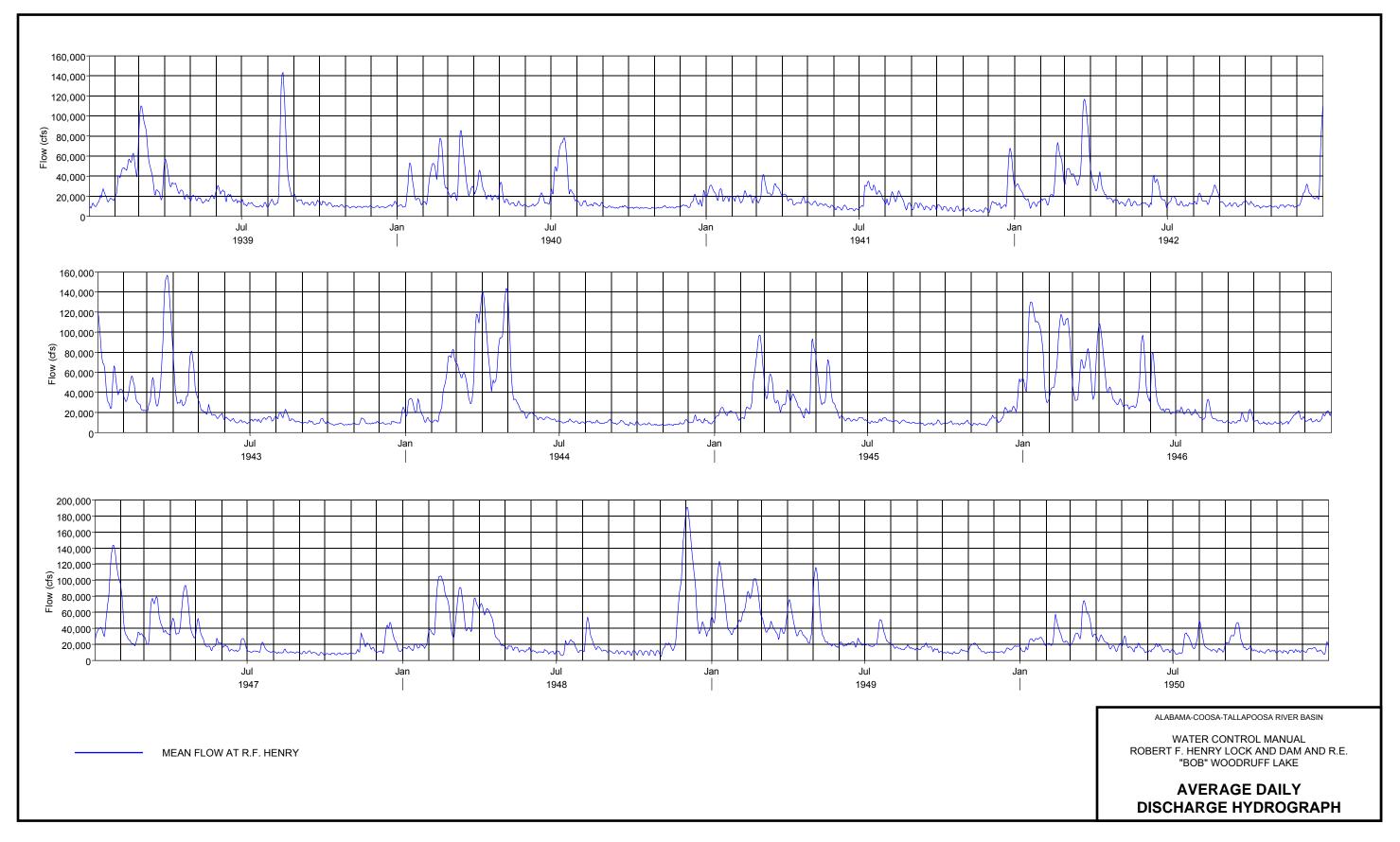
ALABAMA-COOSA-TALLAPOOSA RIVER BASIN

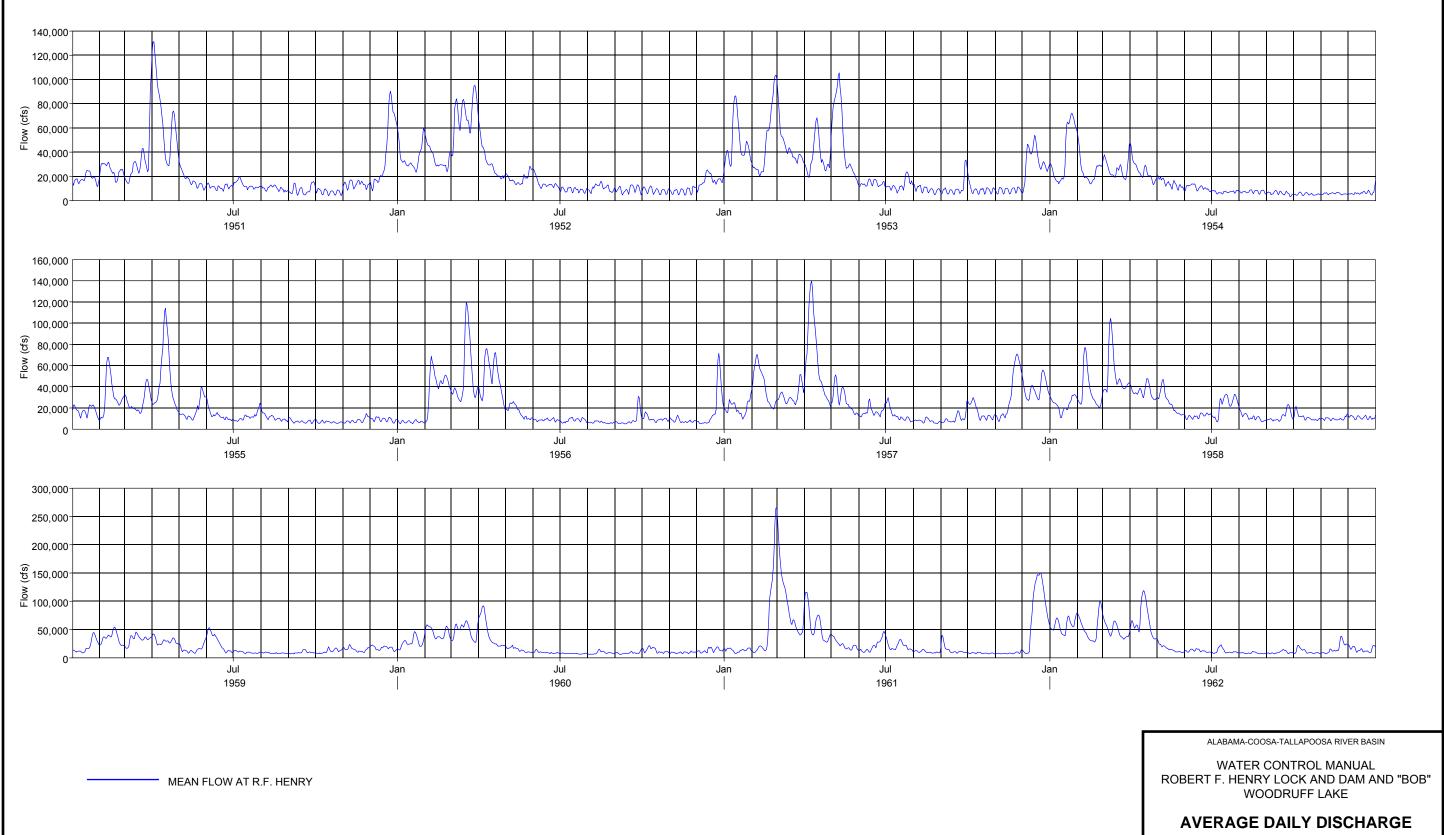
ACT BASIN PRECIPITATION

EXTREMES

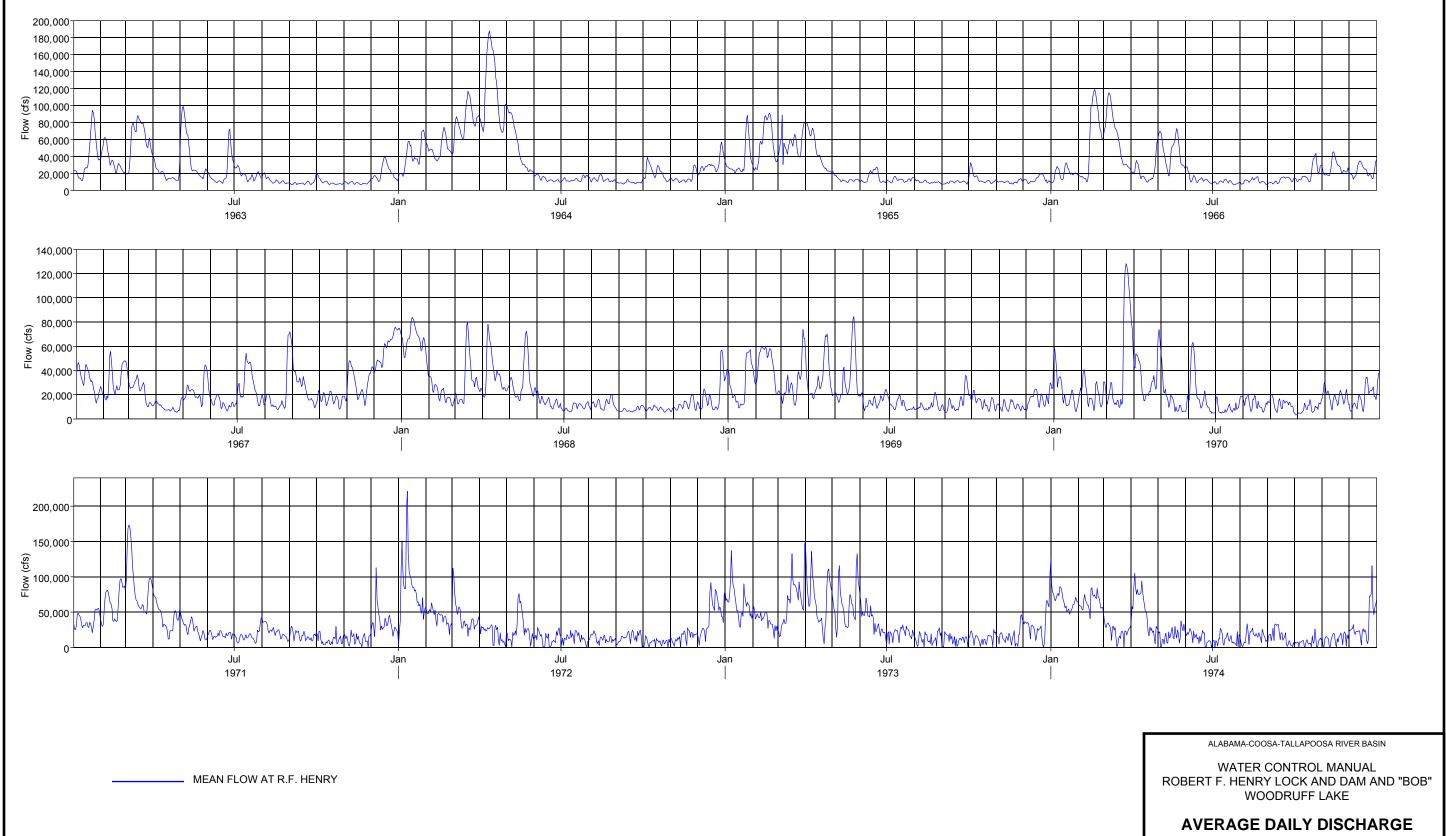

3.57	9.10	1990	0.2	1900	5.7	9/23/1930						
2.6	13.16	1995	0	1904	6.6	10/5/1995						
3.74	20.71	1948	0.18	1924	9.33	11/27/1948						
4.92	12.81	1953	1.08	1955	5.58	12/4/1953						
52.32	83.6	1919	29.76	1954	10.98	8/31/1961						
				_ 、	/ /0							
54) GADS						53 To Year=2009						
Precipitation Averages and Daily Extremes												
Monthly Averages 1 Day Maximum												
Mean	High	Year	Low	Year		Date						
(in.)	(in.)		(in.)		(in.)							
5.26	9.01	1996	1.14	2005	5.2	1/6/2009						
4.83	13.54	1961	0.62	1968	4.75	2/21/1961						
5.84	17.41	1980	0.93	2006	4.98	3/4/1979						
5.13	12.65	1979	0.57	1986	4.6	4/13/1979						
4.62	11.11	2009	0.48	2007	3.5	5/1/2009						
4.12	10.3	1994	0.13	1988	3.1	6/25/1999						
4.88	14.73	2005	1.01	1960	3.36	7/9/1958						
3.58	9.52	1992	0.1	1983	3.63	8/26/2008						
3.6	9.55	1957	0.02	1954	5.1	9/16/2004						
3.03	9	1995	0	1963	4.98	10/26/1997						
4.42	14.38	2004	1.3	1981	5.6	11/24/2004						
4.73	13.05	1961	0.43	1980	5.85	12/12/1961						
54.04	69.71	1979	36.56	1954	5.85	12/12/1961						
			-									

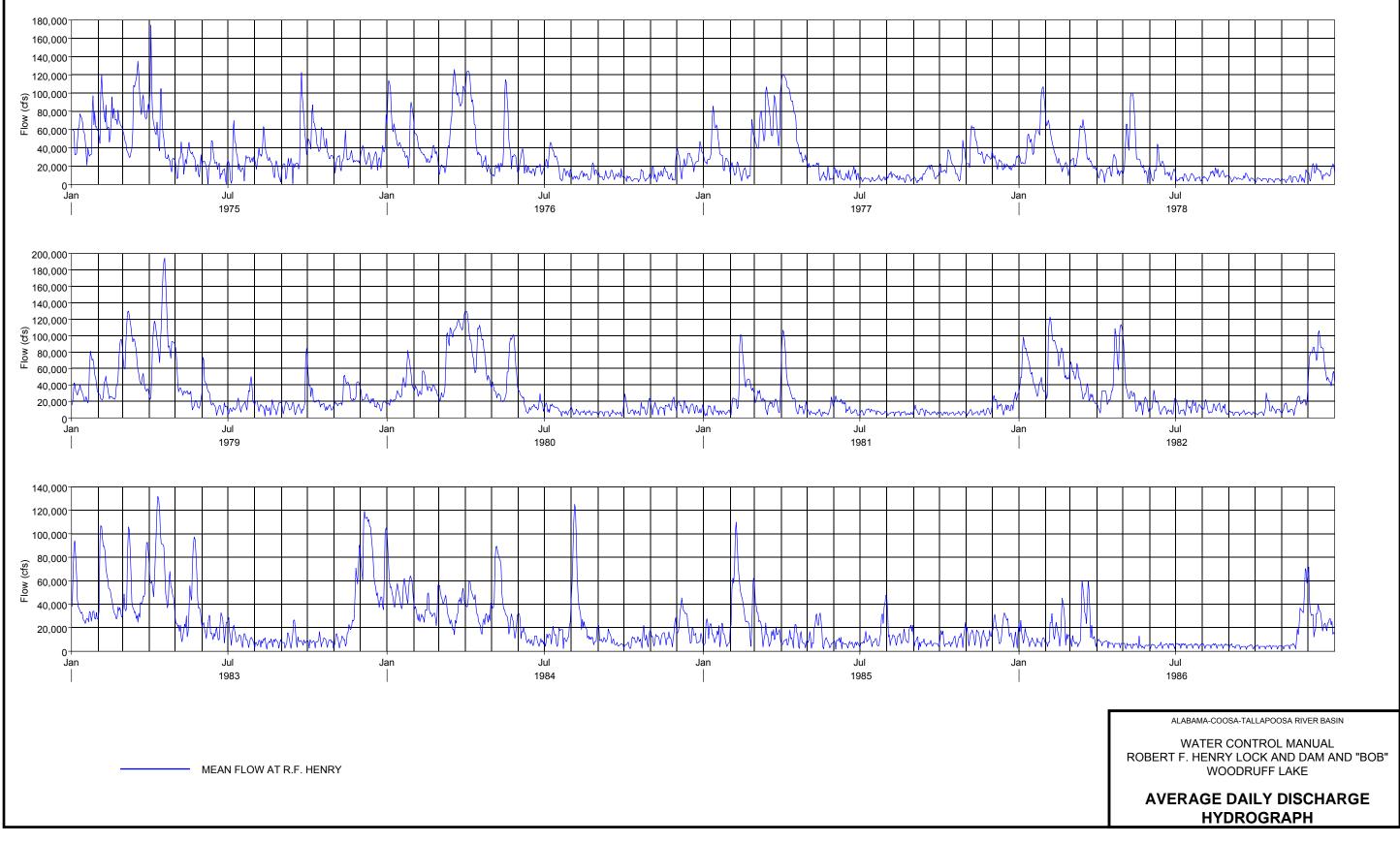
		Month	y Averag	jes	1 Day Maximum			
Mean	High	Year	Low	Year		Date		
(in.)	(in.)		(in.)		(in.)			
4.82	14.36	1936	0.48	1927	4.4	1/16/1925		
5.11	18.39	1961	1.43	1938	9.27	2/25/1961		
6.04	16.41	1929	0.51	2004	5.78	3/17/1990		
4.62	18.4	1964	0.24	1986	5.54	4/8/1964		
3.84	14.85	1978	0.12	1965	4.9	5/4/1978		
3.85	14.37	1989	0.58	1925	4.34	6/5/1928		
5.1	14.98	1916	1.43	1976	4.75	7/8/1996		
4.12	17.13	1961	0.36	1980	10.98	8/31/1961		
3.57	9.78	1998	0.2	1908	5.7	9/25/1956		
2.6	13.16	1995	0	1904	6.6	10/5/1995		
3.74	20.71	1948	0.18	1924	9.33	11/27/1948		
4.92	12.81	1953	1.08	1955	5.58	12/4/1953		
52 32	83.6	1010	29.76	1054	10.98	8/31/1961		

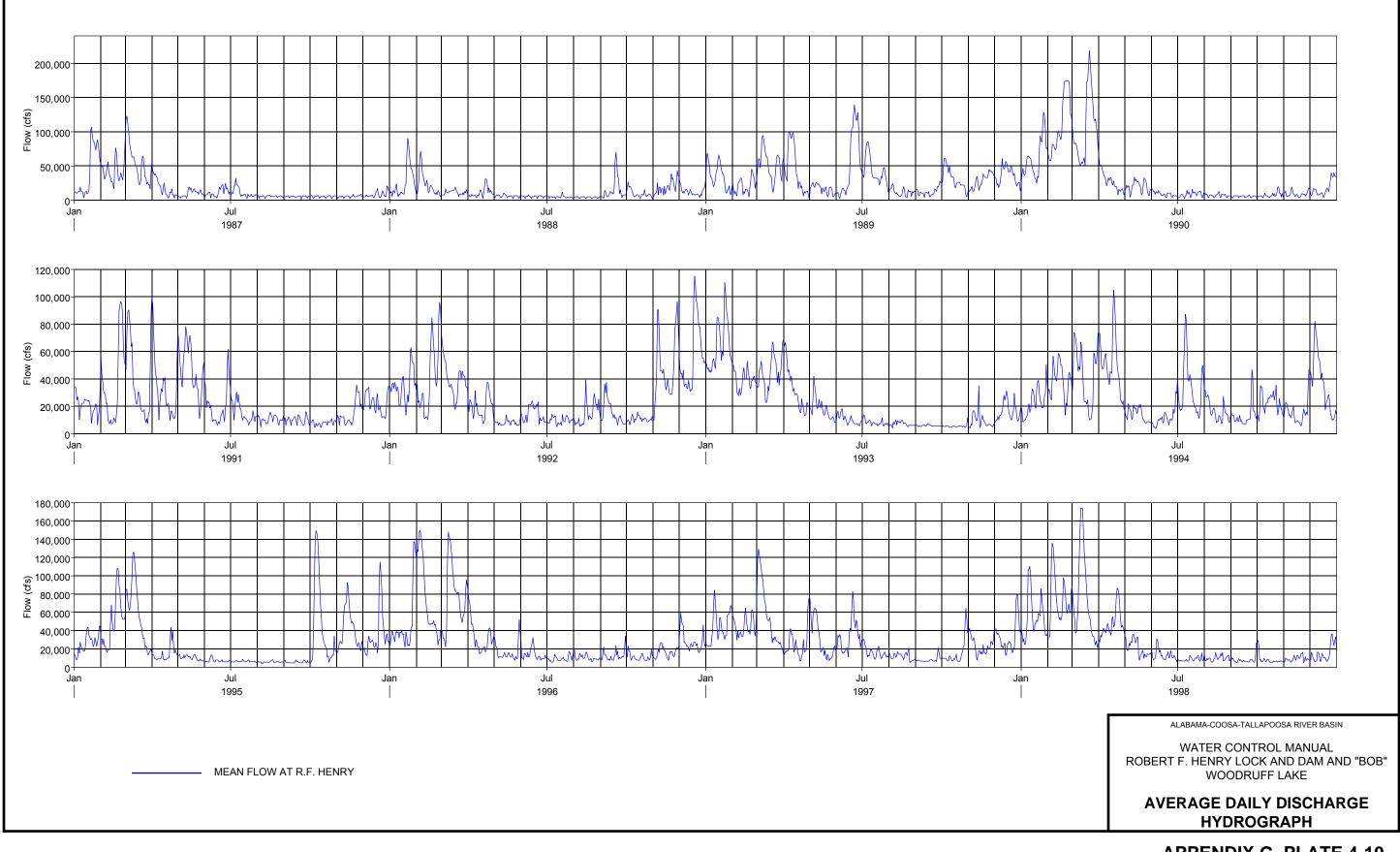

Precipitation Averages and Daily Extremes


U. S. ARMY

From Year=1902 To Year=2009

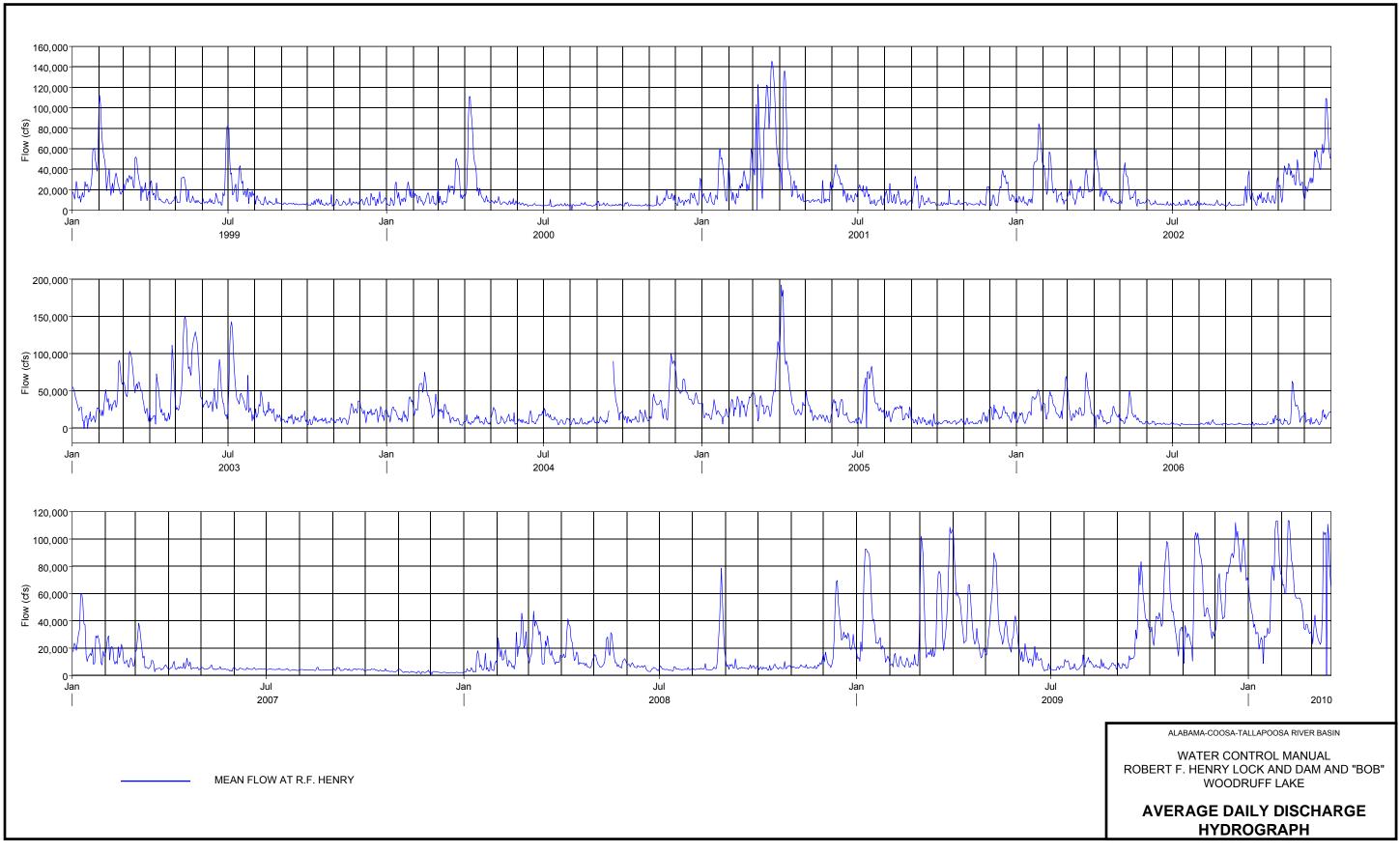




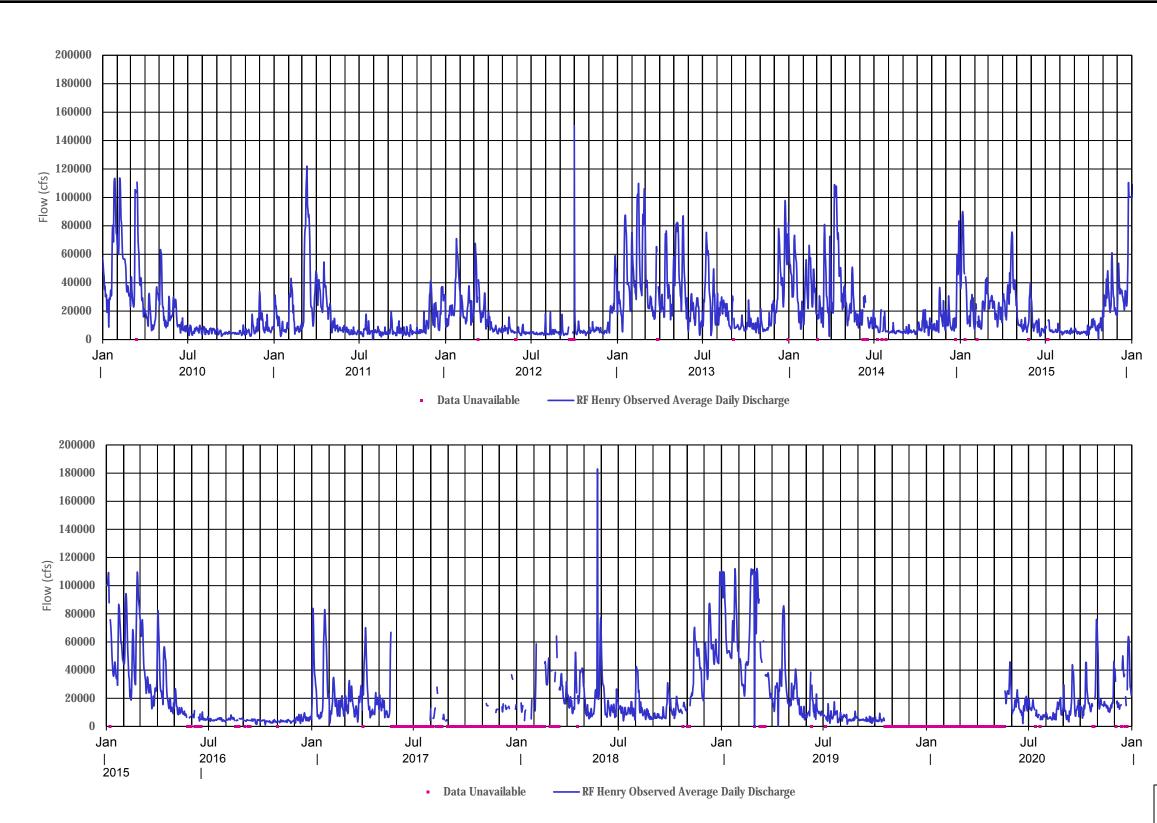

APPENDIX G PLATE 4-8

U. S. ARMY

HYDROGRAPH



U.S. ARMY



APPENDIX G PLATE 4-10

U.S. ARMY

U.S. ARMY

Values in red indicate missing data due to mechanical malfunction

APPENDIX G PLATE 4-12

AVERAGE DAILY DISCHARGE HYDROGRAPH

WATER CONTROL MANUAL ROBERT F. HENRY LOCK AND DAM AND "BOB" WOODRUFF LAKE

ALABAMA-COOSA-TALLAPOOSA RIVER BASIN

							RFI	Henry Dam	site Flow	Summary	Data					
								Maan Mar	thu Diach	orgo (ofo)				Ave	Min	
	Year	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	narge (cfs) Sep	Oct	Nov	Dec	Mean Monthly	Mean Monthly	
-	1939	15996	47499	54840	29244	17739	19868	11401	45770	14174	11385	9513	10099	23961	9513	
	1940	20608	41559	36191	24838	15190	13851	43677	12246	9080	8270	8893	14095	20708	8270	
	1941	21963	18571	25562	15874	11676	7726	22868	15980	9396	7847	6043	22813	15526	6043	
	1942	18489	33934	58923	25597	13208	19968	13545	19004	12133	10864	9959	28794	22035	9959	
	1943	55155	34161	76395	43867	19280	11483	13251	14488	10281	8249	9863	11658	25678	8249	
	1944	21123	44499	71583	90837	33713	13775	10497	10366	9225	7996	8670	11360	27804	7996	
	1945	18869	48510	35851	38698	36378	13098	11561	10288	8950	9271	10239	26273	22332	8950	
	1946	83618	82325	60197	47267	42452	31912	19963	15549	13458	9629	13679	14498	36212	9629	
	1947	77360	33523	47405	51954	24854	16418	12681	10113	9145	8148	16270	23067	27578	8148	
	1948	17867	66902	60418	44155	14124	10586	15419	20970	10133	9883	52001	82641	33758	9883	
	1949	64198	74610	40329	41167	42379	20793	26888	15558	14718	10281	13954	13480	31530	10281	
	1950	21442	28901	41447	20853	16841	14174	20112	17365	26351	11538	11333	13338	20308	11333	
	1951	18002	25164	35260	67692	16280	11273	12893	9967	9056	7194	13504	40859	22262	7194	
	1952	35995	34735	71665	29889	18639	13723	8819	10555	9038	8283	8060	17189	22216	8060	
	1953	47819	49788	44213	36866	50358	14013	12953	9109	11094	8853	8470	33386	27243	8470	
	1954	39800	24435	26888	24009	13860	10818	7107	7221	6078	5301	5712	6609	14820	5301	
	1955	17064	32984	25917	48802	18757	12552	12157	10738	7309	6573	8350	9065	17522	6573	
	1956	6790	43232	51541	48406	16215	8668	8336	6344	9258	9720	7915	19099	19627	6344	
	1957	20444	41235	32053	66730	27228	16801	13044	7662	10624	15928	33626	37870	26937	7662	
	1958	23562	36566	52024	35207	24521	12444	22838	11031	11901	11212	9955	10992	21854	9955	
	1959	19916	34877	33183	29456	15822	26507	9692	8268	9411	11914	14612	17157	19235	8268	
	1960	27945	44070	48603	41984	14036	9345	7395	8824	8734	12835	9291	13414	17578	7395	
	1961	13451	69730	95206	57693	22481	21658	20315	10761	13918	8150	8330	82638	23487	8340	
	1962	58252	53800	47963	65790	15568	12236	11650	8325	9475	11192	16921	14934	23466	8287	
	1963	38008	35507	60381	18827	40504	22425	18201	11375	8889	9366	8660	20572	23591	8287	
	1964	41619	48942	82543	118061	50036	13177	13028	12692	9300	20679	14416	30757	23958	8389	
	1965	34393	55974	55982	44763	12738	15357	12268	9749	9547	13774	10015	12711	24045	8318	
	1966	19928	58728	62035	22326	45270	13475	9427	10741	11811	20376	25882	22897	23971	8321	
	1967	30677	32855	21678	9437	23409	12830	27369	24607	24097	16426	30931	60234	23797	8336	
	1968	63419	20953	31508	37280	31256	12868	9973	11840	7712	8127	11648	22546	23863	8308	
	1969	28519	44118	31183	32624	32188	14672	10765	10606	14905	13374	10121	19372	23302	8248	
	1970	21989	21010	49052	36157	14658	20426	9910	12711	11079	11153	16016	20180	23108	8252	
	1971	37674	63166	89526	41872	26159	18130	16700	22192	16973	10777	11798	34607	22624	8178	
	1972	85636	43374	43127	19767	26522	13469	13244	12416	14028	7860	15079	46045	22219	8083	
	1973	63859	38574	67474	67703	61114	36338	20472	12267	11246	13046	16702	35188	22306	7935	
	1974	66290	64493	22681	51655	17723	13785	11104	15141	15086	7945	12258	34589	22308	7969	
	1975	54531	72490	74956	54457	25711	20762	25701	26152	35419	46344	28376	32785	22312	7965	

MONTHLY AND DAILY FLOW DATA

OB" WOODRUFF LAKE

ALABAMA-COOSA-TALLAPOOSA RIVER BASIN
WATER CONTROL MANUAL
ROBERT F. HENRY LOCK AND DAM AND R.E. "BO

U.S. ARMY

Max

Mean

Monthly

Min

Daily

Max

Daily

							RF I	Henry Dam	site Flow	Summary	Data							
														Ave	Min	Max		
								Mean Mor	thly Disch	arge (cfs)				Mean	Mean	Mean	Min	Max
_	Year	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Monthly	Monthly	Monthly	Daily	Daily
		58293	35275	68404	52736	35726	19082	21712	10607	9613	7004	11619	27206	22088	7942	55280	2741	125748
	1977	36989	21521	69638	71182	13832	10227	5883	7856	11073	21145	36866	23021	22418	8062	55983	1483	120205
	1978	52948	33102	34425	15270	40289	16100	6986	10430	6558	5241	6732	13638	22641	8129	56310	1038	106931
	1979	38811	41191	71396	103079	28555	21948	17679	12885	18590	19857	29914	19451	22778	8210	56526	1871	194130
	1980	36332	36718	89236	81159	48553	15985	10340	6507	6036	11043	12756	12467	22589	8235	56063	1657	129580
	1981	7681	41646	20453	32986	8016	13010	7415	5588	7192	5515	6911	17071	22622	8157	56246	1735	106698
	1982	52573	75315	37471	49540	24771	13266	12152	11153	5914	9749	15714	68886	22776	8152	57217	2507	122696
	1983	38652	55013	53233	70686	37742	19129	11385	7487	9811	7929	26912	77552	23012	8187	57609	1737	131798
	1984	52054	33839	36742	35253	42568	11380	13749	35672	8965	9351	12366	19530	22991	8180	57561	2227	125081
	1985	14207	48176	17244	9993	13224	6398	15312	13054	6698	10184	12501	17711	22969	8175	57504	1152	109878
	1986	10075	17984	20810	6801	4926	4822	5256	4832	4122	3917	20637	27080	22941	8170	57412	1463	71673
	1987	41534	42313	54395	17211	9998	11779	10743	5550	5349	5359	5506	8590	22894	8160	57246	1162	122946
	1988	25926	22480	11406	11201	6134	5418	4778	4303	15513	9553	19826	12859	22842	8152	57068	2174	90417
	1989	35099	21243	52866	42791	16500	53837	42356	11983	12958	30674	28717	35812	22791	8145	56913	2383	139177
	1990	62514	112455	105496	25815	19881	8942	8667	6966	5558	7767	9222	17860	22745	8136	56814	2578	218355
	1991	22135	36677	39848	32001	46882	19873	15268	10525	10049	7957	15242	22437	22694	8128	56689	4831	99896
	1992	34864	42235	38781	19557	8226	14396	9850	14631	15355	10682	49969	56644	22667	8123	56607	5207	115000
	1993	64255	38953	45453	31262	17909	10209	8054	7130	5826	5529	9487	16642	22647	8117	56561	4128	110372
	1994	23501	38913	43434	49563	13840	12484	33684	16110	13349	22569	16341	36159	22648	8114	56565	3933	104870
	1995	26391	50453	57594	14764	9992	7083	6251	5665	5536	45455	42056	36176	22667	8115	56606	3618	149436
	1996	48461	73305	79036	31918	16347	13348	9449	10127	12887	10999	16556	28403	22684	8124	56620	5430	149710
	1997	44750	44983	55965	26215	29400	34240	15870	11614	8107	16505	23190	34119	22701	8131	56657	5026	129025
	1998	54817	76183	72976	48214	20521	12981	8761	9674	8252	7923	9333	15078	22718	8138	56730	4758	174000
	1999	28494	37478	26651	12309	13595	17585	23588	7847	5992	6758	7168	9322	22747	8147	56796	3785	112159
	2000	13229	10978	19443	35139	7640	5251	4897	4976	5349	5026	9075	11022	22762	8151	56833	0	110870
	2001	21227	24861	80284	37996	11543	21005	12758	10761	11161	6728	8382	16557	22767	8152	56856	0	145514
	2002	27692	21809	20108	18891	15655	6315	6165	5706	9666	12287	30381	49321	22767	8149	56871	3825	109126
	2003	21678	40584	52227	32452	83665	36683	50806	22111	11755	9775	17282	19984	22775	8146	56908	0	150164
	2004	20677	38791	14717	9303	12147	11708	11946	8062	22044	12891	42047	45017	22782	8145	56938	3474	99396
	2005	19119	31589	42299	61901	18106	19128	38283	19872	8811	7969	10392	18520	22782	8145	56926	0	191817
	2006	26043	31657	27392	14415	14740	6061	4801	5885	4994	6860	18538	12546	22772	8143	56895	0	74680
	2007	23836	14346	10732	6284	4939	4741	4341	4109	4370	3643	2666	2256	22762	8141	56864	841	60201
	2008	6349	17758	20028	15068	12789	5828	4652	13571	6192	5746	6855	26446	22752	8140	56835	2429	78649
	2009	37223	11519	51445	38709	38897	11028	6602	7453	28527	45787	50634	75853	22744	8138	56809	3307	111975

MONTHLY AND DAILY FLOW DATA

WATER CONTROL MANUAL ROBERT F. HENRY LOCK AND DAM AND R.E. "BOB" WOODRUFF LAKE

ALABAMA-COOSA-TALLAPOOSA RIVER BASIN

Max	
aily	

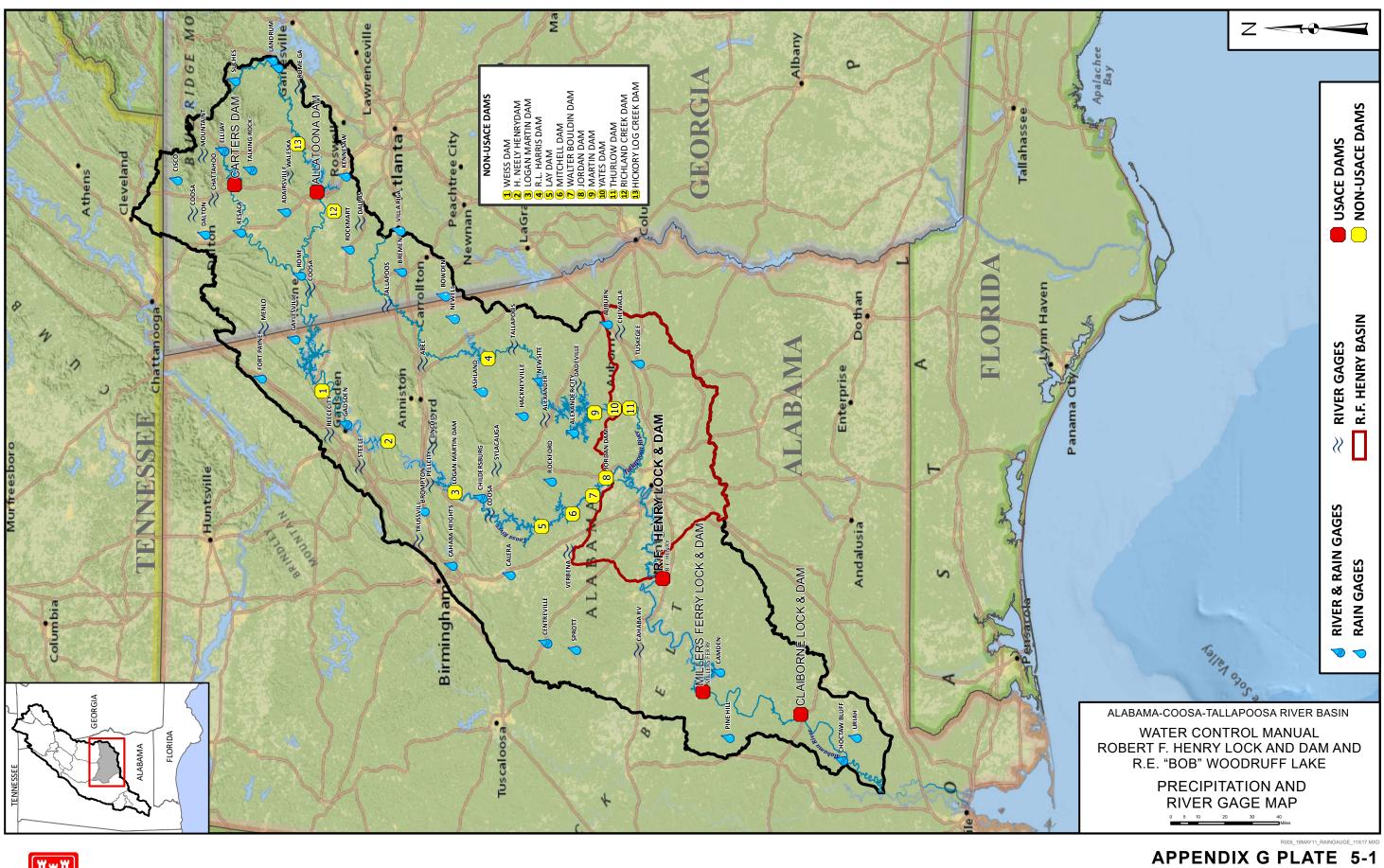
Robert F. Henry Damsite Flow Summary Data Mean Monthly Discharge (cfs)

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Avg Mean Monthly	Min Mean Monthly	Max Mean Monthly	Min Daily	Max Daily
2010	52002	59526	45717	18793	23352	12552	6604	6111	4719	4711	7322	10812	21018	4711	59526	2343	113567
2011	11726	16517	49088	31081	8891	5357	6278	5064	6858	5201	10866	22610	14961	5064	49088	1904	121297
2012	28626	21142	25459	8310	6509	5166	4453	5684		10891	6664	18934					
2013	37734	63322	29636	33371	49152	17836	32425	19376	10341	10734	12202	47781	30326	10341	53032	3073	109298
2014	37475	37329	31193	53032	21388		9485	5616	5835	9627	12946	23814					
2015	34388	20580	21658	36445	13663	9582	7893	5311	5359	9359	29833	48900	20248	5311	48900	33	109544
2016	62858	58724	35928	31393			4714		4196	3505	3536	5553					
2017	32452	15142	16974	21756	11721												
2018				24850	24394	17339	10821	14445	10065	12367		59444					
2019	73708	59504		33079	17720	12834	7487	5921	4678								
2020						14135	10137	9367	14922	22817	18769						

Blank values indicate extensive days of missing data due to mechanical failure

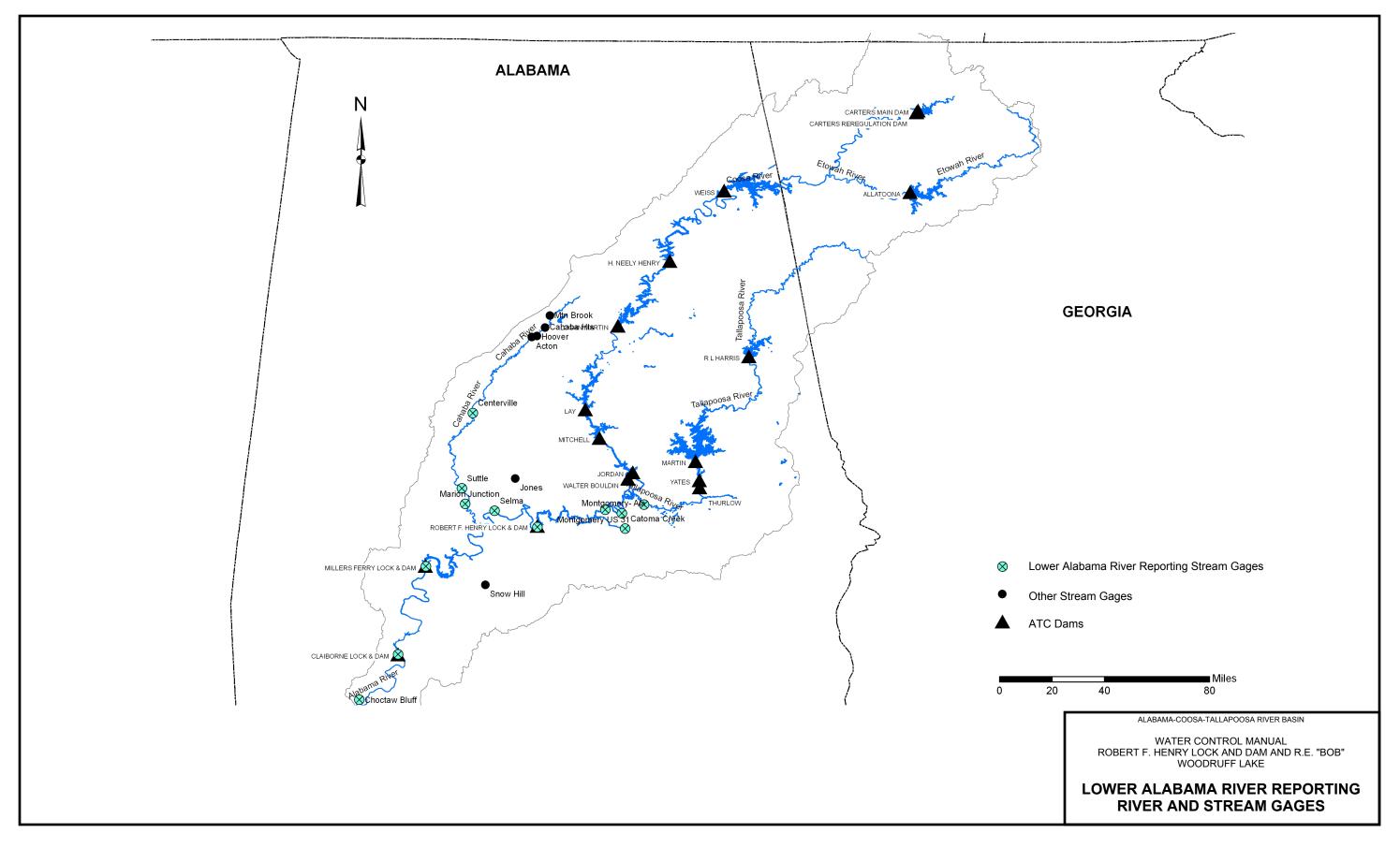
U. S. ARMY

Max
Daily

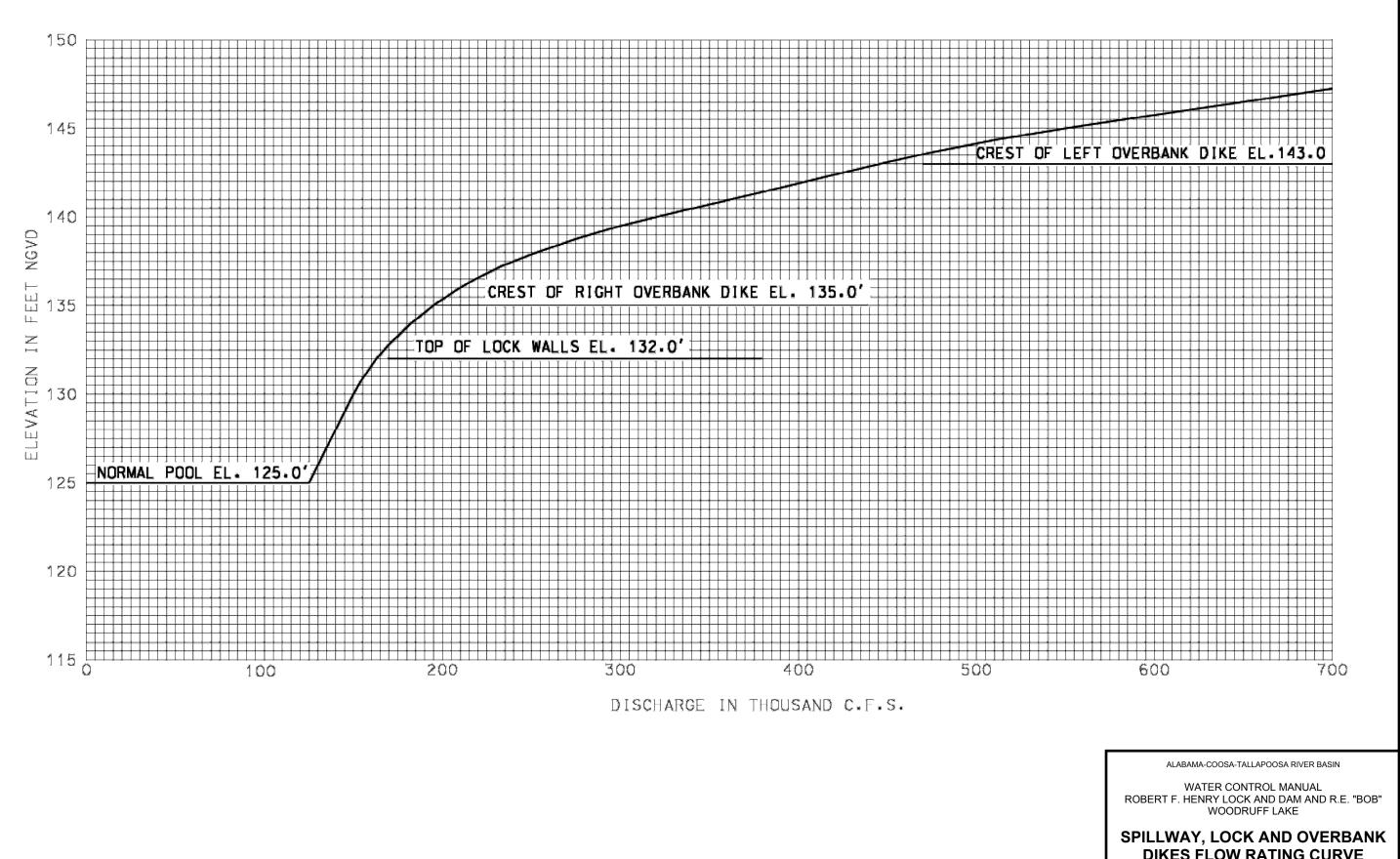

- 343 113567 904 121297

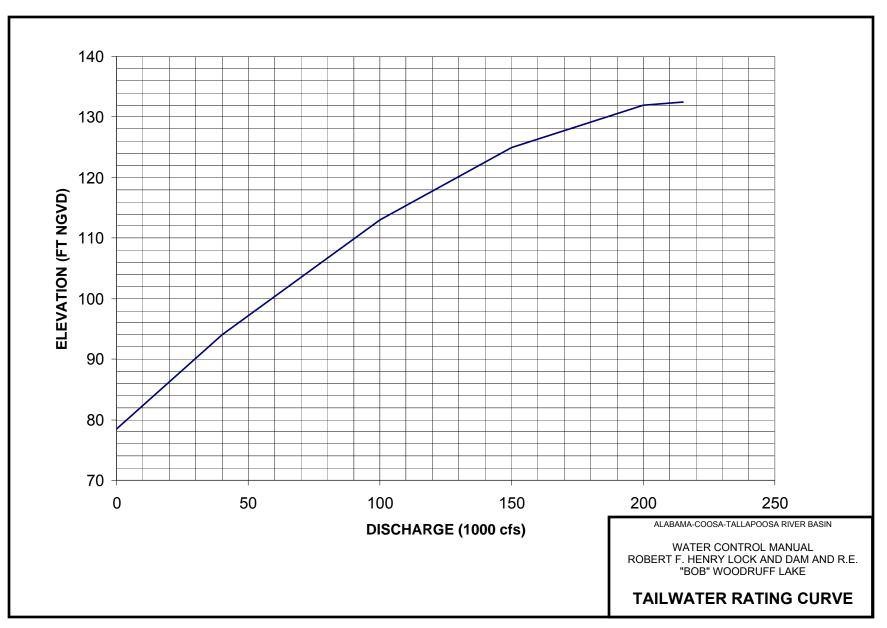
- 33 109544

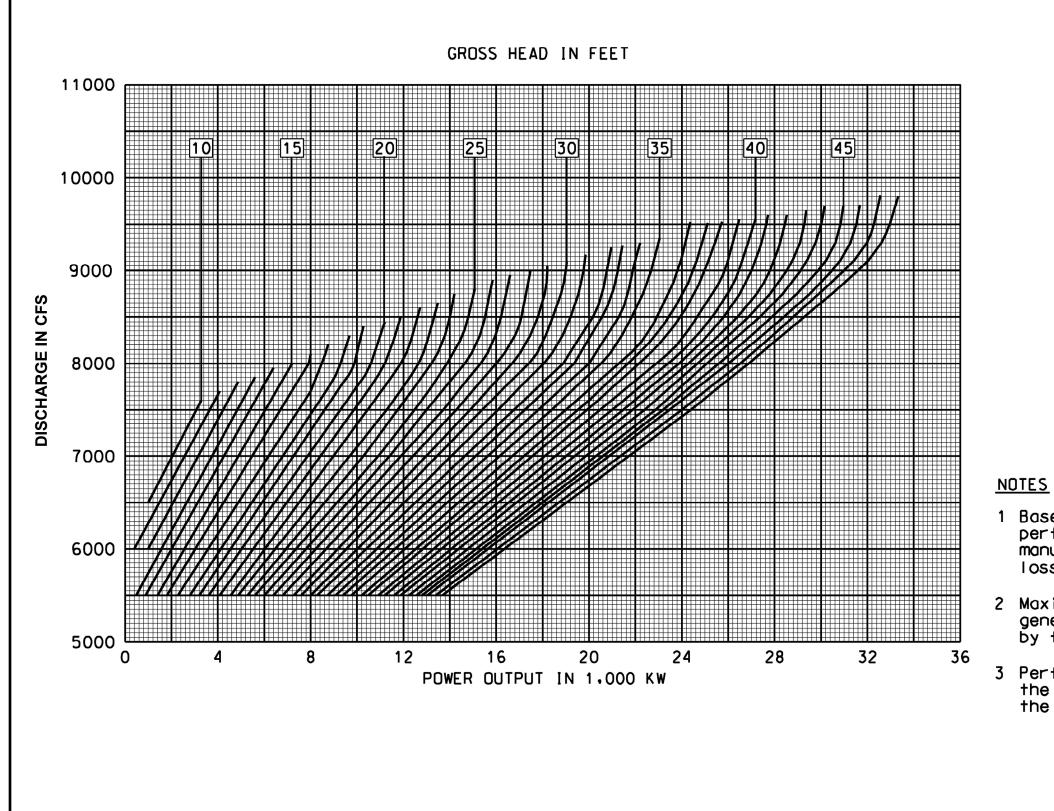
ALABAMA-COOSA-TALLAPOOSA RIVER BASIN


WATER CONTROL MANUAL ROBERT F. HENRY LOCK AND DAM AND R.E. "BOB" WOODRUFF LAKE

MONTHLY AND DAILY FLOW DATA




U.S. ARMY


U. S. ARMY

DIKES FLOW RATING CURVE

U.S. ARMY

1 Based on manufacturer's original performance curves dated June 1967 and manufacturer's calculated generator losses.

2 Maximum and minimum limitation on generating equipment to be determined

the units.

by field test.

3 Performance curves do not reflect the maintenance and rewinding of

ALABAMA-COOSA-TALLAPOOSA RIVER BASIN

WATER CONTROL MANUAL ROBERT F. HENRY LOCK AND DAM AND R.E. "BOB" WOODRUFF LAKE

FLOW VS POWER OUTPUT SINGLE **TURBOGENERATOR UNIT**

U.S. ARMY

STEP			GA	TE O	PEN	IING	SCH	IEDU	JLE				SPIL	LWAY C	OISCHAF	RGE IN C	CFS
NO.				G	ATE	NUN	MBE	R						POOL	ELEVA	TION	
	11	10	9	8	7	6	5	4	3	2	1	123.5	124	124.5	125	125.5	126
		~		PENI						~	•						105
1	1	C 1	C C	C C	C C	C	C	C	C	C	C	101	102	103	103	104	105
2 3	1	1 1	1	C C	202 303	204 306	205 308	207 310	208 313	210 315							
4	1	1	1	1	C	c	c	c	C	c	C	404	408	411	414	417	420
5	1	1	1	1	1	c	c	C	c	c	C	506	509	513	517	521	525
6	1	1	1	1	1	1	C	C	C	C	c	607	611	616	620	625	630
7	1	1	1	1	1	1	1	С	С	С	С	708	713	719	724	729	734
8	1	1	1	1	1	1	1	1	С	С	С	809	815	821	827	833	839
9	2	1	1	1	1	1	1	1	С	С	С	1416	1427	1437	1448	1459	1469
10	2	2	1	1	1	1	1	1	С	С	С	2023	2038	2054	2069	2084	2099
11	2	2	2	1	1	1	1	1	С	С	С	2630	2650	2670	2690	2709	2729
12	2	2	2	2	1	1	1	1	C	C	C	3236	3261	3286	3310	3335	3359
13 14	2 2	2 2	2 2	2 2	2 2	1 2	1 1	1 1	C C	C C	C C	3843 4450	3873 4484	3902 4518	3931 4552	3960 4585	3988 4618
14	2	2	2	2	2	2	2	1	C	c	C	4430 5057	5096	5134	4002 5173	4385 5211	4018 5248
16	2	2	2	2	2	2	2	2	c	c	C	5664	5708	5751	5793	5836	5878
17	3	2	2	2	2	2	2	2	С	С	С	6996	7050	7103	7156	7208	7260
18	3	3	2	2	2	2	2	2	С	С	С	8328	8392	8456	8519	8581	8643
19 20	3	3	3	2	2 2	2 2	2 2	2 2	C C	C C	C	9661	9735	9808	9881	9953	10025
20 21	3 3	3 3	3 3	3 3	2 3	2	2	2	C	C	C C	10993 12325	11077 12419	11161 12513	11244 12606	11326 12699	11408 12790
22	3	3	3	3	3	2	2	2	c	c	C	13657	13762	13866	13969	14071	14173
23	3	3	3	3	3	3	3	2	C	c	C	14989	15104	15218	15331	15444	15555
24	3	3	3	3	3	3	3	3	C	C	C	16322	16447	16571	16694	16816	16938
	-												V	AMA-COOSA- VATER CC F. HENRY "BOB" W(1anual D dam an	
													SPILL	NAY G SCI	ATE O IEDUL		ΓΙΟΝ

			(GATE	OPE	NIN	g sc	HE	DULI	E									S	PILLWAY [DISCHARG	E IN CFS						
STEP NO.						-																						
	11	10	9	8	GAT	<u>E NU</u> 6	_		4	3	2	1	44.)	42.0	40.0	38.0	36.0	34.0	32.0	<u>OSS HEAD</u> 30.0	28.0	26.0	24.0	22.0	20.0	18.0	16.0
				-	NING I	-	-		-										••					•				
25	4	3	3	3	3	3	3		3	С	С	С	2015		19693	19219	18732	18233	17719	17190	16644	16080	15495					
26	4	4	3	3	3	3	3		3	С	C	C	2119		20709	20210	19698	19173	18632	18076	17502	16909	16294					
27 28	4	4 1	4	3 ⊿	ა ვ	ა ა	3		ა ვ	C	C C	C C	2223		21724 22740	21201 22192	20664 21630	20113 21053	19546 20460	18962 19849	18360 19218	17738 18567	17093 17891					
20	4	4	4	4	4	3	3		3	C C	c	c	2431		23755	23183	22596	21000	21373	20735	20077	19396	18690					
30	4	4	4	4	4	4	3		3	c	c	č	2535		24770	24173	23561	22933	22287	21621	20935	20225	19489					
31	4	4	4	4	4	4	4	Ļ	3	С	С	С			-	25164	24527	23873	23200	22508	21793	21054	20288	19492	18662			
32	4	4	4	4	4	4	4	ŀ	4	С	С	С				26155	25493	24813	24114	23394	22651	21883	21087	20260	19397			
33	5	4	4	4	4	4	4	ŀ	4	С	С	С				27112	26425	25721	24996	24250	23480	22683	21858	21001	20107			
34	5	5	4	4	4	4	4	ŀ	4	С	С	С				28068	27358	26628	25878	25105	24308	23484	22629	21742	20816			
35	5	5	5	4	4	4	4	ŀ	4	С	С	С				29025	28290	27535	26759	25961	25136	24284	23400	22482	21525			
36	5	5	5	5	4	4	4	ŀ	4	С	С	С				29981	29222	28443	27641	26816	25964	25084	24172	23223	22235			
37	5	5	5	5	5	4	4	-	4	С	С	С				30938	30154	29350	28523	27671	26793	25884	24943	23964	22944			
38	5	5 5	5	5	5 5	5	4	•	4	C	C C	C C				31894	31087	30257 31165	29405	28527	27621	26685 27485	25714	24705	23653 24363			
39 40	5	5	5	5	5	5	5 5		4 5	C C	C	c				32851 33807	32019 32951	32072	30287 31169	29382 30238	28449 29278	28285	26485 27256	25446 26187	24303 25072			
41	5	5	5	5	5	5	5		5	1	С	С									29718	28384	27317	26228	25101	23926	22694	21393
41	5	5	5	5	5	5	5		5	2	C	c									30441	29808	28275	26929	25643	24362	23055	21699
43	5	5	5	5	5	5	5	, 5	5	3	c	č									31251	30191	29093	27952	26762	25516	24207	22822
44	5	5	5	5	5	5	5	5	5	4	C	C									32109	31020	29892	28719	27497	26217	24872	23449
45	5	5	5	5	5	5	5	5	5	5	С	С									32937	31821	30663	29460	28206	26893	25513	24054
46	5	5	5	5	5	5	5	5	5	5	1	С									33377	31919	30724	29501	28235	26914	25 529	24066
47	5	5	5	5	5	5	5	5	5	5	2	С									34100	33344	31682	30202	28777	27351	25890	24371
48	5	5	5	5	5	5	5	5	5	5	3	С									34911	33727	32500	31225	29896	28504	27042	25495
49	5	5	5	5	5	5	5		5	5	4	С									35769	34556	33299	31993	30631	29205	27706	26122
50	5	5	5	5	5	5	5		5	5	5	С									36597	35356	34070	32733	31340	29881	28348	26727
51	5	5	5 5	5 5	5 5	5	5		5 5	5 5	5	1									37037	35455	34131	32775	31369	29903	28364	26739
52 53	5	5	5	5	5	5	5) :	5 5	5	5 5	2 3									37760 38570	36880 37263	35089 35907	33476 34498	31911 33030	30339 31493	28725 29876	27044 28168
53	5	5	5	5	5	5	5	5	5	5	5	4									39429	38092	36706	34498 35266	33765	32193	30541	28795
55	5	5	5	5	5	5	5		5	5	5	5									40257	38892	37477	36007	34474	32870	31183	29399
56	6	5	5	5	5	5	5	5	5	5	5	5									41123	39729	38283	36782	35216	33577	31854	30032
57	6	6	5	5	5	5	5	5	5	5	5	5									41989	40565	39090	37556	35957	34284	32525	30665
58	6	6	6	5	5	5	5	5	5	5	5	5									42855	41402	39896	38331	36699	34991	33196	31297
59	6	6	6	6	5	5	5	5	5	5	5	5									43721	42239	40702	39106	37441	35698	33866	31930
60	6	6	6	6	6	5	5	5	5	5	5	5									44588	43076	41509	39880	38183	36406	34537	32562
61	6	6	6	6	6	6	5) \	5	5	5	5									45454	43912	42315	40655	38924	37113	35208	33195
62	6	6 6	6	6	6	6	6) :	5 6	5 5	5 5	5 5									46320 47186	44749 45586	43121 43928	41430 42204	39666 40408	37820 38527	35879 26550	33827
63 64	6	0	6 6	0	0	0	0	, ,	6	0 6	5 5	5 5									47186 48052	45586 46423	43928 44734	42204 42979	40408 41149	38527 39234	36550 37221	34460 35092
65	6	6	6	6	6	6	6	, S	6	6	6	5									48052	47260	45540	42979	41891	39234 39942	37892	35725
66	6	6	6	6	6	6	6		6	6	6	6									49784	48096	46347	44529	42633	40649	38563	36357
																								ALA	BAMA-COOS	A-TALLAPOC	SA RIVER BA	SIN
																									WATER ERT F. HEN R.E. "BOB		AND DAM	AND
																								SPILLW	AY GATE	OPERA		IEDULE

ALABAMA-COOSA-TALLAPOOSA RIVER BASIN

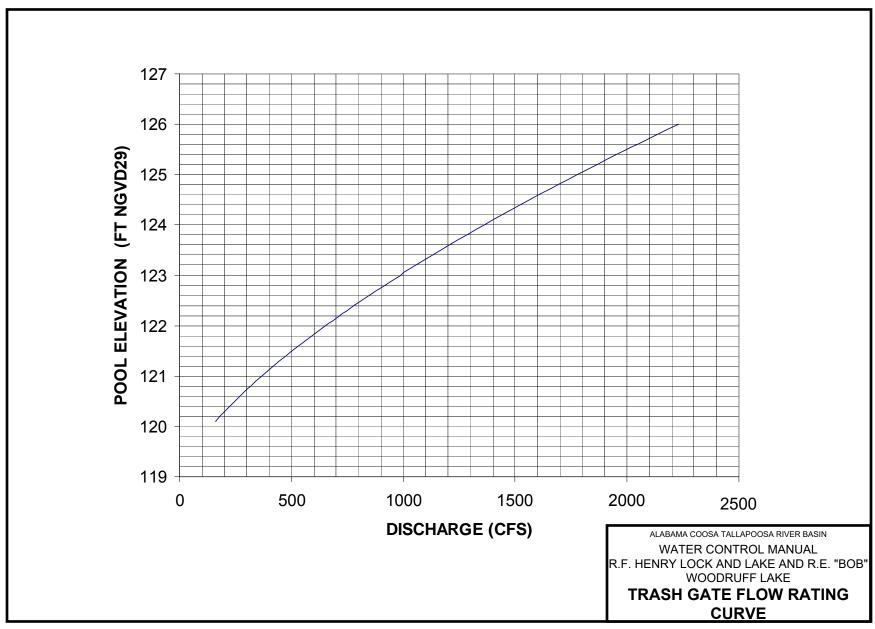
			(GATE	OPE	NING	SCH	EDUL	E								S	PILLWAY	DISCHARG	E IN CFS					
STEP NO.					GATE		MBEF	R										GR	OSS HEAD)					
	11	10	9		7 NING IN	6	5	4	3	2	1	30.0	28.0	26.0	24.0	22.0	20.0	18.0	16.0	14.0	12.0	10.0	8.0	6.0	4.0
67	7	6	6	6	ning in 6	6 6	онета 6	6	6	6	6	50651	48933	47153	45303	43375	41356	39234	36990						
68	7	7	6	6	6	6	6	6	6	6	6	51517	49770	47959	46078	44116	42063	39905	37623						
69	7	7	7	6	6	6	6	6	6	6	6	52383	50607	48766	46853	44858	42770	40576	38255						
70	7	7	7	7	6	6	6	6	6	6	6	53249	51443	49572	47627	45600	43478	41247	38888						
71	7	7	7	7	7	6	6	6	6	6	6	54115	52280	50379	48402	46341	44185	41917	39520						
72	7	7	7	7	7	7	6	6	6	6	6	54981	53117	51185	49177	47083	44892	42588	40153						
73	7	7	7	7	7	7	7	6	6	6	6	55847	53954	51991	49952	47825	45599	43259	40785						
74	7	7	7	7	7	7	7	7	6	6	6	56714	54791	52798	50726	48567	46306	43930	41418						
75	7	7	7	7	7	7	7	7	7	6	6	57580	55627	53604	51501	49308	47014	44601	42050						
76	7	7	7	7	7	7	7	7	7	7	6	58446	56464	54410	52276	50050	47721	45272	42683						
77	7	7	7	7	7	7	7	7	7	7	7	59312	57301	55217	53050	50792	48428	45943	43315						
78	8	7	7	7	7	7	7	7	7	7	7	60188	58147	56032	53834	51542	49143	46622	43955						
79	8	8	7	7	7	7	7	7	7	7	7	61064	58994	56848	54618	52292	49859	47300	44595						
80	8	8	8	7	7	7	7	7	7	7	7	61940	59840	57663	55401	53043	50574	47979	45235						
81	8	8	8	8	7	7	7	7	7	7	7	62816	60686	58479	56185	53793	51289	48657	45875						
82	8	8	8	8	8	7	7	7	7	7	7	63693	61533	59295	56968	54543	52005	49336	46514						
83	8	8	8	8	8	8	7	7	7	7	7	64569	62379	60110	57752	55293	52720	50015	47154						
84	8	8	8	8	8	8	8	7	7	7	7	65445	63226	60926	58536	56044	53435	50693	47794						
85	8	8	8	8	8	8	8	8	7	7	7	66321	64072	61741	59319	56794	54151	51372	48434						
86	8	8	8	8	8	8	8	8	8	7	7	67197	64918	62557	60103	57544	54866	52051	49074						
87	8	8	8	8	8	8	8	8	8	8	7	68073	65765	63373	60886	58294	55581	52729	49714						
88	8	8	8	8	8	8	8	8	8	8	8	68949	66611	64188	61670	59045	56297	53408	50353						
89	9	8	8	8	8	8	8	8	8	8	8	69841	67473	65019	62468	59808	57025	54099	51005						
90	9	9	8	8	8	8	8	8	8	8	8	70733	68335	65849	63266	60572	57753	54790	51656						
91	9	9	9	8	8	8	8	8	8	8	8	71625	69197	66680	64064	61336	58482	55481	52308						
92	9	9	9	9	8	8	8	8	8	8	8	72517	70058	67510	64861	62100	59210	56172	52959						
93	9	9	9	9	9	8	8	8	8	8	8	73409	70920	68340	65659	62864	59938	56863	53611						
94	9	9	9	9	9	9	8	8	8	8	8	74301	71782	69171	66457	63628	60667	57554	54262						
95	9	9	9	9	9	9	9	8	8	8	8			70001	67255	64392	61395	58245	54913	51367	47556	43413			
96	9	9	9	9	9	9	9	9	8	8	8			70832	68053	65156	62123	58936	55565	51976	48121	43928			
97	9	9	9	9	9	9	9	9	9	8	8			71662	68851	65920	62852	59626	56216	52586	48685	44443			
98	9	9	9	9	9	9	9	9	9	9	8			72493	69649	66683	63580	60317	56868	53195	49249	44958			
99	9	9	9	9	9	9	9	9	9	9	9			73323	70446	67447	64309	61008	57519	53804	49813	45473			
100	10	9	9	9	9	9	9	9	9	9	9			74150	71241	68208	65034	61696	58168	54411	50375	45986			
101	10	10	9	9	9	9	9	9	9	9	9			74976	72035	68968	65759	62384	58816	55018	50936	46498			
102	10	10	10	9	9	9	9	9	9	9	9			75803	72829	69729	66484	63072	59465	55624	51498	47011			
103	10	10	10	10	9	9	9	9	9	9	9			76630	73624	70489	67209	63760	60113	56231	52060	47524			
104	10	10	10	10	10	9	9	9	9	9	9			77457	74418	71250	67934	64448	60762	56838	52621	48037			
105	10	10	10 10	10	10 10	10 10	9 10	9	9	9	9			78283	75212	72010	68659	65136	61411 62050	57444 58051	53183 53745	48549			
106 107	10	10 10	10 10	10 10	10 10	10 10	10 10	9 10	9	9	9			79110 70037	76007 76801	72771	69384 70100	65824 66511	62059 62708	58051 58658	53745 54306	49062 49575			
107 108	10		10 10	10 10	10 10			10	9 10	9	9 9			79937 80764	76801 77505	73531	70109	66511 67100	62708 63356	58658 59264	54306 54868	49575 50087			
108 109	10 10	10 10	10 10	10 10	10 10	10 10	10 10	10	10	9 10	9			80764 81590	77595 78389	74292 75052	70834 71559	67199 67887	63356 64005	59264 59871	55430	50600			
109	10	10	10	10	10	10	10	10	10	10	9 10			82417	70309 79184	75052 75813	71559	68575	64005 64653	60478	55991	50000 51113 [ALABA	MA-COOSA-TALL	ABOOSA RIVER BASIN
				.0										<u>5</u> - 117			. 2207	00070	0,000		20001	0.110			
																							ROBERT	F. HENRY L	OCK AND DAM AND
																							SPILI		E OPERATION
		I																						SCHE APPEND	DULE DIX G PLATE I

	11 10 9 8 7 6 5 4 3 2 1 OPENING IN RATCHET STEPS 11 10 10 10 10 10 10 10 10 10 10 11 10 1																	SF	PILLWAY [U. S. ARMY	
STEP NO.	44	10				-				2	<u> </u>	4		26.0	24.0	22.0	20.0	10.0	46.0		OSS HEAD			6.0	4.0	
		10	9	-		-	-			3	<u> </u>			26.0	24.0	22.0	20.0	18.0	16.0	14.0	12.0	10.0	8.0	6.0	4.0	
111	11	10	10							10	10	10	83	255	79989	76583	73019	69272	65310	61092	56561	51632				
112	11	11	10	10	10	10	10	10	0	10	10	10	84	093	80794	77354	73754	69969	65968	61707	57130	52152				
113			11									10		931	81599	78125	74489	70666	66625	62322	57699	52672				
114												10		768	82404	78895	75224	71364	67282	62937	58268	53191				
115 116	11	11 11	11 11	11	11	10	10			10	10	10 10		606 444	83209 84014	79666 80437	75959 76694	72061 72758	67940 68597	63552 64166	58837 59407	53711 54231				
117	11	11	11	11	11	11	11			10	10	10		282	84819	81208	77428	73455	69254	64781	59976	54750				
118	11	11	11	11	11	11	11	1		10	10	10		120	85624	81978	78163	74152	69911	65396	60545	55270				
119	11	11	11	11	11	11	11	1	1	11	10	10		958	86429	82749	78898	74849	70569	66011	61114	55789				
120	11	11	11	11	11	11	11	11	1	11	11	10	90	795	87233	83520	79633	75546	71226	66626	61683	56309				
121	11	11	11	11	11	11	11	1	1	11	11	11	91	633	88038	84290	80368	76244	71883	67240	62253	56829				
122	12	11	11	11	11	11	11		:	11	11	11						76964	72562	67876	62841	57365	51309	44435	36281	
123	12	12	11	11	11	11	11			11	11	11						77684	73241	68511	63429	57902	51789	44851	36621	
124	12	12	12	11	11	11	11			11	11	11						78404	73920	69146	64017	58439	52270	45267	36960	
125	12	12	12	12	11	11	11			11	11	11						79125	74599 75278	69781 70417	64605	58976	52750 52220	45683 46098	37300 37639	
126 127	12	12 12	12 12	12 12	12 12	11 12	11 11			11	11 11	11						79845 80565	75958	70417 71052	65193 65781	59513 60050	53230 53710	46514	37979	
127	12	12	12	12	12	12	12			11	11	11						81285	76637	71687	66369	60587	54190	46930	38318	
129	12	12	12	12	12	12	12			11	11	11						82006	77316	72322	66957	61123	54670	47346	38658	
130	12	12	12	12	12	12	12			12	11	11						82726	77995	72957	67545	61660	55151	47762	38997	
131	12	12	12	12	12	12	12			12	12	11						83446	78674	73593	68134	62197	55631	48178	39337	
132	12	12	12	12	12	12	12	12	2	12	12	12						84167	79353	74228	68722	62734	56111	48594	39676	
133	13	12	12	12	12	12	12	12	2	12	12	12						84888	80033	74864	69311	63272	56592	49010	40017	
134	13	13	12	12	12	12	12	12	2	12	12	12						85610	80714	75501	69900	63810	57073	49427	40357	
135	13	13	13	12	12	12	12			12	12	12						86332	81395	76138	70490	64348	57555	49844	40697	
136	13	13	13	13	12	12	12			12	12	12						87054	82075	76774	71079	64886	58036	50261	41038	
137	13	13	13	13	13	12	12			12	12	12						87776	82756	77411	71668	65424	58517	50677	41378	
138 139	13	13 13	13 13	13 13	13 13	13 13	12 13	12 12		12 12	12 12	12 12						88497 89219	83436 84117	78047 78684	72258 72847	65962 66500	58998 59479	51094 51511	41718 42058	
139	13	13	13	13	13	13	13	13		12	12	12						89941	84797	79320	73437	67038	59961	51927	42058	
141	13	13	13	13	13	13	13			13	12	12						90663	85478	79957	74026	67576	60442	52344	42739	
142	13	13	13	13	13	13	13			13	13	12						91385	86158	80594	74615	68114	60923	52761	43079	
143	13	13	13	13	13	13	13	13		13	13	13						92106	86839	81230	75205	68652	61404	53178	43419	
144	14	13	13	13	13	13	13	13	3	13	13	13						92850	87540	81886	75812	69206	61900	53607	43770	
145	14	14	13	13	13	13	13			13	13	13						93593	88241	82541	76419	69760	62395	54036	44120	
146	14	14	14	13	13	13	13			13	13	13						94337	88941	83197	77026	70314	62891	54465	44471	
147	14	14	14	14	13	13	13	13		13	13	13						95080	89642	83853	77633	70868	63387	54894	44821	
148	14	14	14	14	14	13	13	13	3	13	13	13						95823	90343	84508	78240	71423	63882	55324	45172	
149	14	14	14	14	14	14	13	13	3	13	13	13						96567	91044	85164	78846	71977	64378	55753	45522	
150	14	14	14	14	14	14	14	13		13	13	13						97310	91745	85820	79453	72531	64873	56182	45872	
151	14	14	14	14	14	14	14	14		13	13	13						98054	92446	86475	80060	73085	65369	56611	46223	
152	14	14	14	14 14	14 14	14 14	14	14		14 14	13 14	13						98797	93147	87131	80667	73639	65865	57041	46573	
153 154	14	14 14		14 14	14 14	13 14						99540 100284	93848 94549	87786 88442	81274 81881	74193 74747	66360 66856	57470 57899	46924 47274							
																						Г			TALLAPOOSA RIVER B	ASIN
																							ROBEF	RT F. HENF	NTROL MANUAL RY LOCK AND DAN WOODRUFF LAKE	
																							SPILLW	AY GATE	OPERATION SCH	IEDULE
																						L				

		IEERS	-	GATE	OPE	NING	SCH	EDUL	.E									SI		DISCHARG	E IN CFS	
STEP NO.							MBER													OSS HEAD		
-	11	10	9		7	6	5	4	3	2	2 1	1	 18.0	16.0	14.0	12.0	10.0	8.0	6.0	4.0	2.0	0.5
155 156 157 158 159 160 161 162 163 164 165 166	15 15 15 15 15 15 15 15 15 15	14 15 15 15 15 15 15 15 15 15	14 14 15 15 15 15 15 15 15 15	OPEN 14 14 15 15 15 15 15 15 15 15 15	IING IN 14 14 14 14 15 15 15 15 15 15 15 15 15 15	N RATC 14 14 14 14 14 15 15 15 15 15 15	CHET S 14 14 14 14 14 14 15 15 15 15 15 15	TEPS 14 14 14 14 14 14 14 15 15 15 15	14 14 14 14 14 14 14 15 15 15	1 1 <t< th=""><th>4 1, 4 1, 4 1, 4 1, 4 1, 4 1, 5 1, 5 1, 5 1</th><th>4 4 4 4 4 4 4 4 5 5</th><th>101029 101774 102519 103264 104009 104754 105498 106243 106988 107733 108478 109232</th><th>95251 95953 96656 97358 98060 98763 99465 100167 100870 101572 102274 102285</th><th>89099 89756 90413 91070 91727 92384 93041 93698 94355 95012 95669 96334</th><th>82490 83098 83706 84314 84923 85531 86139 86747 87356 87964 88572 89188</th><th>75302 75858 76413 76968 77523 78079 78634 79189 79744 80300 80855 81417</th><th>67353 67849 68346 68842 69339 69836 70332 70829 71326 71822 72319 72822</th><th>58329 58759 59189 59619 60049 60479 60910 61340 61770 62200 62630 63065</th><th>47625 47977 48328 48679 49030 49381 49732 50084 50435 50786 51137 51493</th><th>2.0</th><th>0.5</th></t<>	4 1, 4 1, 4 1, 4 1, 4 1, 4 1, 5 1, 5 1, 5 1	4 4 4 4 4 4 4 4 5 5	101029 101774 102519 103264 104009 104754 105498 106243 106988 107733 108478 109232	95251 95953 96656 97358 98060 98763 99465 100167 100870 101572 102274 102285	89099 89756 90413 91070 91727 92384 93041 93698 94355 95012 95669 96334	82490 83098 83706 84314 84923 85531 86139 86747 87356 87964 88572 89188	75302 75858 76413 76968 77523 78079 78634 79189 79744 80300 80855 81417	67353 67849 68346 68842 69339 69836 70332 70829 71326 71822 72319 72822	58329 58759 59189 59619 60049 60479 60910 61340 61770 62200 62630 63065	47625 47977 48328 48679 49030 49381 49732 50084 50435 50786 51137 51493	2.0	0.5
167 168 169 170 171 172 173 174 175 176 177 178 178	16 16 16 16 16 16 16 16 16 17 17	16 16 16 16 16 16 16 16 16 17	15 16 16 16 16 16 16 16 16 16	15 15 16 16 16 16 16 16 16 16	15 15 15 16 16 16 16 16 16 16	15 15 15 16 16 16 16 16 16	15 15 15 15 16 16 16 16 16 16	15 15 15 15 15 15 16 16 16 16 16	15 15 15 15 15 15 15 16 16 16 16	$5 1_{5} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 5 5 5 5 5 5 5 5 5 5 5 6 6 6	109987 110741 111495 112249 113003 113758 114512 115266 116020 116774 117538 118301	103696 104407 105119 105830 106541 107252 107963 108674 109385 110096 110816 111536	96999 97664 98329 98995 99660 100325 100990 101655 102320 102985 103659 104332	89804 90420 91035 91651 92267 92883 93499 94114 94730 95346 95969 96593 97216	81979 82541 83104 83666 84228 84790 85352 85914 86476 87039 87608 88177	73324 73827 74330 74833 75336 75838 76341 76844 77347 77850 78359 78868 70377	63501 63936 64372 64807 65243 65678 66113 66549 66984 67420 67861 68301 68301	51848 52204 52559 52915 53270 53626 53981 54337 54692 55048 55408 55768		
179 180 181 182 183 184 185 186 187 188 189 189	17 17 18 18	17 17 17 17 17 17 17 17 17 17	17 17 17 17 17	16 17 17 17 17 17 17 17 17 17	17 17 17 17	17 17 17 17	16 16 16 17 17 17 17 17 17	16 16 16 16 17 17 17 17	16 16 16 16 16 16 17 17 17 17	5 10 5 10 5 10 5 10 5 10 7 10 7 11 7 11 7 11 7 11 7 11 7 11 7 11 7 11	6 1 6 1 6 1 6 1 7 1 7 1 7 1 7 1 7 1	6 6 6 6 6 6 7 7 7	119065 119828 120592 121355 122119 122882 123646 124409 125172	112255 112975 113695 114415 115135 115854 116574 117294 118014	105005 105679 106352 107025 107699 108372 109045 109718 110392	97216 97839 98463 99086 99709 100333 100956 101580 102203	88746 89315 89884 90453 91022 91591 92160 92729 93298 93865 94432	79377 79886 80394 80903 81412 81921 82430 82939 83448 83955 84462	68742 69183 69624 70064 70505 70946 71387 71828 72268 72268 72707 73146	56128 56488 56847 57207 57567 57927 58287 58647 59007 59365 59724	41978 42231	20989 21116 2112
190 191 192 193 194 195 196 197 198	18 18 18 18 18 18 18 18	18 18 18 18 18 18 18 18	18 18 18 18 18 18 18 18	17 18 18 18 18 18 18 18 18	17 17 18 18 18 18 18 18 18	17 17 18 18 18 18 18 18	17 17 17 18 18 18 18 18	17 17 17 17 17 18 18 18 18	17 17 17 17 17 17 18 18 18	1 1	7 1 7 1 7 1 7 1 7 1	7 7 7 7 7 7 7					94998 95565 96132 96699 97265 97832 98399 98365 99532	84969 85476 85983 86490 86997 87504 88011 88517 89024	73585 74024 74463 74902 75341 75780 76219 76658 77097	60082 60441 60799 61158 61516 61874 62233 62591 62950	42485 42738 42991 43245 43498 43752 44005 44259 44512	21242 21369 21496 21622 21749 21876 22003 22129 22256 ALABAMA-COOSA-TALLAPOOSA RIVER BASIN
																						WATER CONTROL MANUAL ROBERT F. HENRY LOCK AND DAM AND R.E. "BOB" WOODRUFF LAKE
																						SPILLWAY GATE OPERATION SCHEDULE APPENDIX G PLATE 7-

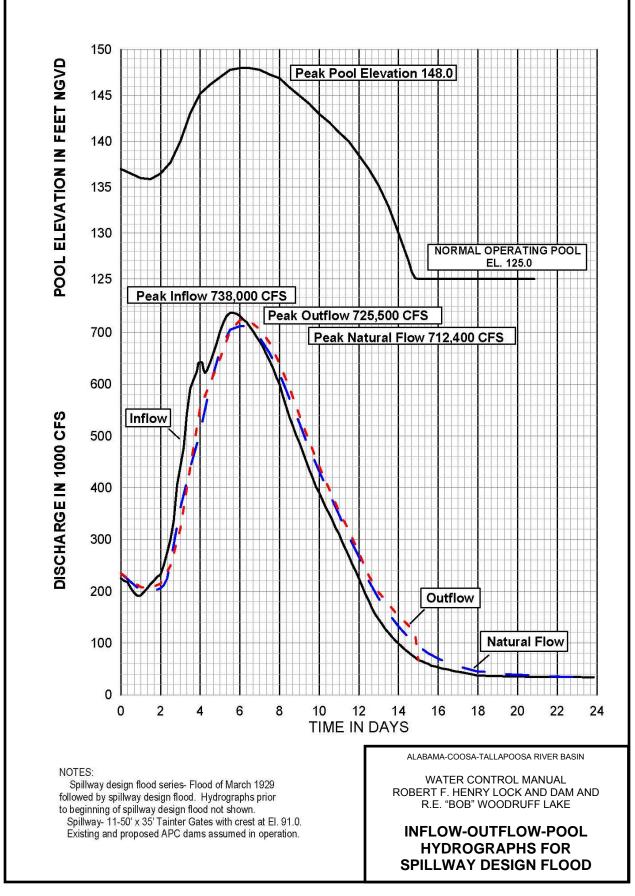
							PEI	NIN	G S	СН	EDl	JLE						S	PILLW	VAY D	ISCHAR	GE IN CF	S				G	ATE	OPEI	NING	SCH	EDUI	E				SF	PILLWAY	DISCHAR		
						_									-						DSS HEA			-							MBER	-							OSS HEA		
	11		10	9			-	-		-		-		2	1	1	0.0	8.0		6.0	4.0	2.0	0.5		11	10	-	-		-	-	-	-	2	1	10.0	8.0	6.0	4.0	2.0	0.5
CORPS STEP NO. 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 226 227 228 229 230 231 222 223 224 225 226 227 228 229 230 231 222 233 244 255 266 277 288 299 210 211 212 213 214 215 226 227 228 229 230 221 222 223 224 225 226 227 228 229 230 221 222 223 224 225 226 227 228 229 230 231 222 223 224 225 226 227 228 229 230 231 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 230 231 232 233 234 235 236 237 238 239 230 231 232 233 234 235 236 237 238 239 230 231 232 233 234 235 236 237 238 239 230 231 232 233 234 235 236 237 238 239 230 231 232 233 234 235 236 237 238 239 230 231 232 233 234 235 236	11 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 20 21 21 21 21 21 21 21 21 21 21 21 21		10 18 19 19 19 19 19 19 19 19 20 20 20 20 20 20 20 20 20 20	G 18 19 19 19 19 19 19 19 19 19 20 20 20 20 20 20 20 20 20 20	ATI	DG BIII BIII BIII BIIII BIIIIIIIIIIIII	ATE 7 IG IN 18 18 19 19 19 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20 20	E NU 6 1 RA 1 RA 	JME IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	BER 5 ET 8 18 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 20 20 20 20 20 20 20 20 20 20 20 20 20	4 4 18 18 18 18 18 19 19 19 19 19 20	3 3 18 18 18 18 18 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20 20		21 21 21 21 21 21	1 18 18 18 18 18 18 18 18 18 18	1 1000 1006 1017 1016 1022 1032 1042 1125 1132 1142 1152 1126 112	604 139 675 211 746 2818 354 354 355 211 746 2818 354 354 354 354 354 354 355 366 374 375 374 375 374 <td< th=""><th>8.0 89503 89983 90462 90941 91420 91899 92378 92858 93337 93816 94295 94857 95420 95982 96545 97107 97670 98232 96545 97107 97670 98232 98794 99357 97670 98232 98794 99357 97107 97670 98232 98794 93575 100482 101008 101535 102061 102588 103114 103640 105746 105746 105746 105746 105746 105746 105746 105746 107338 107871</th><th>775 776 778 78 78 78 79 79 80 80 80 81 81 82 82 83 83 83 83 83 83 83 83 83 83 83 83 83</th><th></th><th></th><th></th><th>0.5 22376 22496 22615 22735 22855 22975 23095 2314 23334 23574 23714 23574 23996 24136 24277 24417 24558 24980 25120 25252 25384 25515 25647 25779 25910 26042 26173 26305 26437 26568 26701 26834 26968 27101 26834 26968 27101 26834</th><th>STEP NO. 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280</th><th>23 23 23 23 23 23 23 23 23 23 23 23 23 2</th><th>25 25 25 25 25 26</th><th>9 22 23 23 23 23 23 23 23 23 23 23 23 23</th><th>8 DPEN 22 23 24 24 24 24 24 24 24 24 24 25 25 25 25 25 25 25</th><th>GATE 7 ING IN 22 22 22 23 23 23 23 23 23 23 23 23 23</th><th>E NU 6 1 RAT 22 22 23 23 23 23 23 23</th><th>BER 5 2</th><th>4 3 1 2 2 2 2 2 2 2 2 2 2</th><th>3 22 22 22 22 22 22 22 22 22 22 22 22 22</th><th>22 22 22 22 22 22 22 22 22 22 22 22 22</th><th>22 22 22 22 22 22 22 22 22 22 22 22 22</th><th>126574 127177 127781 128385 128988 129592 130195 130799 131402 132006 132617 133229 133840 134452 135064 135675 136287 136898 137510 138122 138733 139358 139984 140609 141235 141860 142485 143111 143736 144361 144987 145612 146240 146868 147495</th><th>8.0 112671 113211 113751 114291 11431 115370 115910 115910 116450 116990 117530 118069 118617 119164 119711 120258 120805 121352 121352 121352 121352 121352 124646 122993 123540 124646 125205 125765 126324 124683 124683 124683 127403 128002 128561 129680 130240 130801 131362 131924 132485</th><th>GR6.0975769804498511989799944699914100381100849101316101784102251103199103672104146104620105094105567106041106515106988107462107947108431108915109400109884110369110853111337111822112306112791</th><th></th><th>GE IN CF</th><th>S. ARM O.5 28168 28303 28438 28573 28708 28843 28978 29113 29247 29382 29517 29654 29791 29928 30064 30201 30338 30475 30611 30748 30885 31022 31161 30748 30885 31022 31161 31721 31861 31721 31861 32001 32140 32280 32420 32560 32700 32841 32981 33121 33262</th></td<>	8 .0 89503 89983 90462 90941 91420 91899 92378 92858 93337 93816 94295 94857 95420 95982 96545 97107 97670 98232 96545 97107 97670 98232 98794 99357 97670 98232 98794 99357 97107 97670 98232 98794 93575 100482 101008 101535 102061 102588 103114 103640 105746 105746 105746 105746 105746 105746 105746 105746 107338 107871	775 776 778 78 78 78 79 79 80 80 80 81 81 82 82 83 83 83 83 83 83 83 83 83 83 83 83 83				0.5 22376 22496 22615 22735 22855 22975 23095 2314 23334 23574 23714 23574 23996 24136 24277 24417 24558 24980 25120 25252 25384 25515 25647 25779 25910 26042 26173 26305 26437 26568 26701 26834 26968 27101 26834 26968 27101 26834	STEP NO. 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280	23 23 23 23 23 23 23 23 23 23 23 23 23 2	25 25 25 25 25 26	9 22 23 23 23 23 23 23 23 23 23 23 23 23	8 DPEN 22 23 24 24 24 24 24 24 24 24 24 25 25 25 25 25 25 25	GATE 7 ING IN 22 22 22 23 23 23 23 23 23 23 23 23 23	E NU 6 1 RAT 22 22 23 23 23 23 23 23	BER 5 2	4 3 1 2 2 2 2 2 2 2 2 2 2	3 22 22 22 22 22 22 22 22 22 22 22 22 22	22 22 22 22 22 22 22 22 22 22 22 22 22	22 22 22 22 22 22 22 22 22 22 22 22 22	126574 127177 127781 128385 128988 129592 130195 130799 131402 132006 132617 133229 133840 134452 135064 135675 136287 136898 137510 138122 138733 139358 139984 140609 141235 141860 142485 143111 143736 144361 144987 145612 146240 146868 147495	8.0 112671 113211 113751 114291 11431 115370 115910 115910 116450 116990 117530 118069 118617 119164 119711 120258 120805 121352 121352 121352 121352 121352 124646 122993 123540 124646 125205 125765 126324 124683 124683 124683 127403 128002 128561 129680 130240 130801 131362 131924 132485	GR6.0975769804498511989799944699914100381100849101316101784102251103199103672104146104620105094105567106041106515106988107462107947108431108915109400109884110369110853111337111822112306112791		GE IN CF	S. ARM O.5 28168 28303 28438 28573 28708 28843 28978 29113 29247 29382 29517 29654 29791 29928 30064 30201 30338 30475 30611 30748 30885 31022 31161 30748 30885 31022 31161 31721 31861 31721 31861 32001 32140 32280 32420 32560 32700 32841 32981 33121 33262
232 233 234 235	22 22 22 22 22 22 22 22 22		21 22 22 22 22 22 22	21 22 22 22 22 22 22	2 2 2 2 2 2 2 2	1 1 2 2 2	21 21 21 21 22 22 22	21 21 21 21 21 21		21 21 21 21 21 21 21 22	21 21 21 21 21 21 21 21	21 21 21 21 21 21 21	1 2 1 2 1 2 1 2 1 2 1 2 1 2	21 21 21 21 21 21 21	21 21 21 21 21 21 21 21	1194 1200 1200 1217 1217 1223 1223	412 007 603 198 794 389 985	106805 107338 107871 108403	924 925 934 934 945 945	496 957 419 880	75523 75899 76276 76653	53403 53669 53935 54202	26701 26834 26968 27101	276 277 278 279	26 26 26 26 26 26 26 26	25 26 26 26 26 26 26	25 25 26 26 26 26 26	25 25 26 26 26 26	25 25 25 25 26 26 26	25 25 25 25 25 26 26	25 25 25 25 25 25	25 25 25 25 25 25 25 25	25 25 25 25 25 25 25 25	25 25 25 25 25 25 25 25	25 25 25 25 25 25 25 25	146240 146868 147495 148123 148751 149378 150006	130801 131362 131924 132485 133047 133608 134169	113277 113763 114249 114736	92490 92887 93284 93681	65400 65681 65962 66243	32700 32841 32981 33121
240 241 242	22	2 2	22	22	2	2	22		2 2	22	22	22 22 22	2 2		21	1247	771	111066 111599 112132	96	186 647 109	78536 78912 79289	55533 55799 56066	27767 27900 28033	284 285 286	26		26	26	26		26 26 26	26	26	26	25		135854 136415 Alaba V DBERT F R.E.	117166 117653 118139 MA-COOSA-TAL VATER CON T. HENRY "BOB" WC	TROL MANU LOCK AN DODRUFF	^{JAL} D DAM AI LAKE	

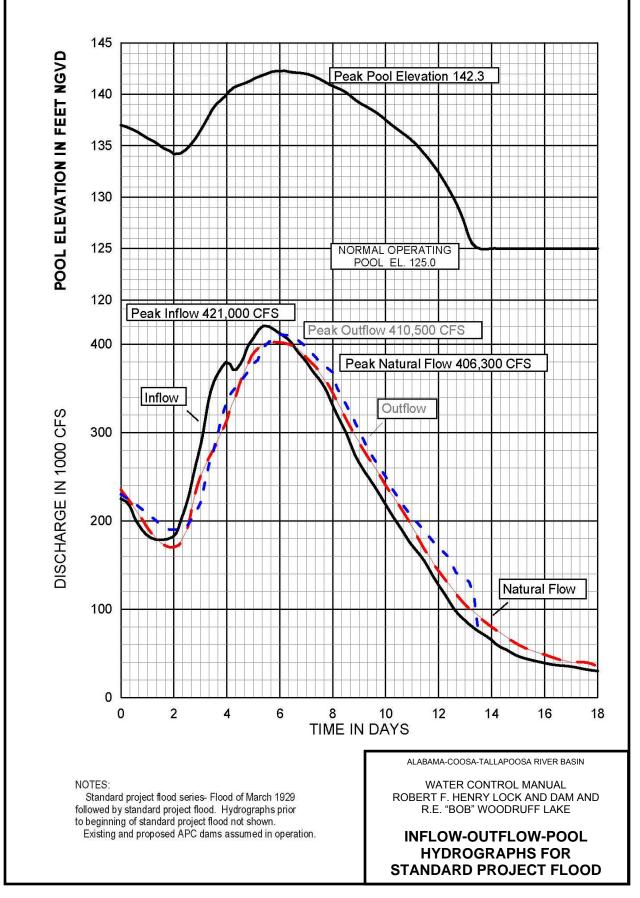
145612	130240	112791	92093	65120	325
146240	130801	113277	92490	65400	327
146868	131362	113763	92887	65681	328
147495	131924	114249	93284	65962	329
148123	132485	114736	93681	66243	331
148751	133047	115222	94078	66523	332
149378	133608	115708	94475	66804	334
150006	134169	116194	94872	67085	335
150634	134731	116680	95269	67365	336
151261	135292	117166	95666	67646	338
151889	135854	117653	96063	67927	339
152517	136415	118139	96460	68208	341
	ALABAN	A-COOSA-TAL	LAPOOSA RIV	ER BASIN	

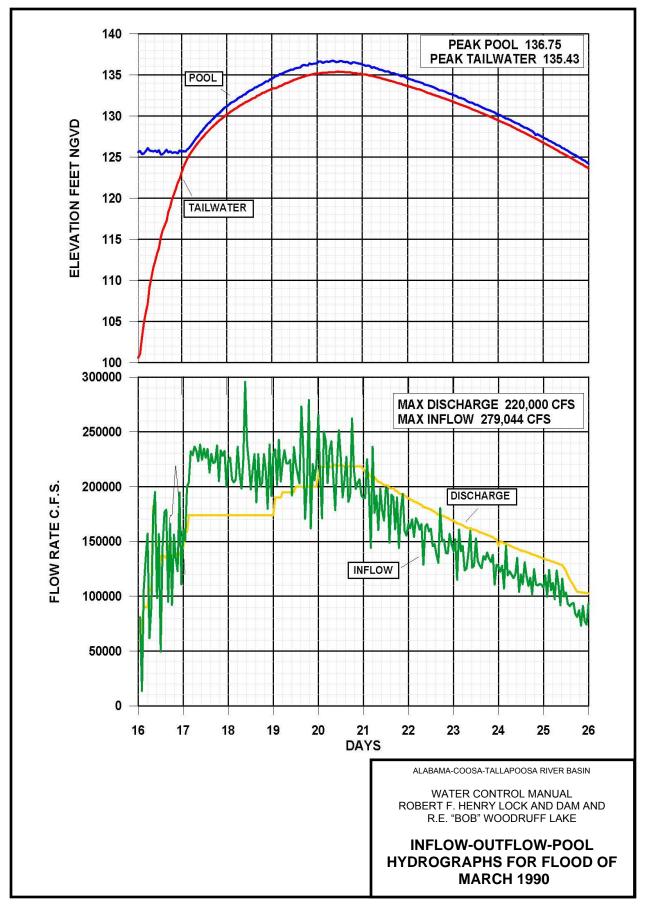

STEP NO.	_			TE C		NING E NUN			JLE				SP		DISCHAR OSS HEA		S	STEP			G/				SCH MBER		E				SP		DISCHAR OSS HEA	GE IN CF	S. ARMI S
NO.	11	10	-	8	7	6	5	4	3	2	1	10.0	8.0	6.0	4.0	2.0	0.5	NO.	11	10		8	7	6	5		3	2	1	10.0	8.0	6.0	4.0	2.0	0.5
207	27	26		26		RATO				26	26	153155	136986	118633	96863	68493	34246	221	21	30	30	OPENI 30					20	20	30	181519	162356	140604	11/002	81178	40589
287 288	27 27	20 27	20 26	-	26 26		26 26	26 26	26 26	26 26	20 26		137556	119127	90803 97267	68778	34240	331 332	31	30 31	30 30	30 30	30 30	30 30					30 30	182171	162939	140004		81469	40589
289	27	27	27		26	26	26	26	26	26	26		138127	119621	97671	69063	34532	333	31	31	31	30	30	30	30				30	182823	163522	141614		81761	40880
290	27	27	27	-	26	26	26	26	26	26	26	155069	138698	120116	98074	69349	34674	334	31	31	31	31	30	30	30				30	183475	164105	142119		82052	41026
291	27	27	27	27	27	26	26	26	26	26	26	155707	139268	120610	98478	69634	34817	335	31	31	31	31	31	30	30	30	30	30	30	184127	164688	142624	116452	82344	41172
292	27	27	27	27	27	27	26	26	26	26	26	156345	139839	121104	98881	69919	34960	336	31	31	31	31	31	31	30	30	30	30	30	184779	165271	143129	116864	82635	41318
293	27	27	27	27	27	27	27	26	26	26	26	156983	140410	121598	99285	70205	35102	337	31	31	31	31	31	31	-				30	185430	165854	143634		82927	41463
294	27	27	27	27	27	27	27	27	26	26	26	157621	140980	122093	99688	70490	35245	338	31	31	31	31	31	31	-	-			30	186082	166437	144139	117689	83218	41609
295 296	27 27	27	27 27	27 27	27 27	27 27	27 27	27 27	27 27	26 27	26 26	158259 158897	141551 142122	122587 123081	100092 100495	70775 71061	35388 35530	339 340	31	31 31	31 31	31 31	31 31	31 31					30 30	186734 187386	167020 167603	144644 145148	118101 118513	83510 83801	41755 41901
290 297	27	27	27	27	27	27	27	27	27	27	20 27	159535	142692	123081	100493	71346	35673	340	31	31	31	31	31	31	-		 		30 31	188038	168186	145653	118925	84093	42046
298	28	27	27	27	27	27	27	27	27	27	27	160179	143268	124074	101306	71634	35817	342	32	31	31	31	31	31					31	188696	168775	146164		84388	42194
298	28	27	27	27	27	27	27	27	27	27	27	160822	143208	124074	101300	71922	35961	342	32	32	31	31	31	31	-		 		31	189355	169364	146674	119342	84682	42341
300	28	28	28	27	27	27	27	27	27	27	27	161466	144420	125071	102120	72210	36105	344	32	32	32	31	31	31					31	190014	169953	147184	120175	84977	42488
301	28	28	28	28	27	27	27	27	27	27	27	162110	144995	125570	102527	72498	36249	345	32	32	32	32	31	31	31	31	31	31	31	190672	170543	147694	120592	85271	42636
302	28	28	28	28	28	27	27	27	27	27	27	162754	145571	126068	102934	72786	36393	346	32	32	32	32	32	31	-	-			31		171132	148205	121008	85566	42783
303	28	28	28		28	28	27	27	27	27	27	163397	146147	126567	103342	73074	36537	347	32	32	32	32	32	32	-			-	31	191990	171721	148715	121425	85860	42930
304 305	28 28	28 28	28 28		28 28	28 28	28 28	27 28	27 27	27 27	27 27	164041 164685	146723 147299	127066 127564	103749 104156	73361 73649	36681 36825	348 349	32	32 32	32 32	32 32	32 32	32 32					31 31	192649 193307	172310 172899	149225 149735	121842 122258	86155 86450	43078 43225
305	20 28	20 28	20 28	20 28	20 28	20 28	20 28	20 28	27 28	27	27	165329	147299	127504	104150	73937	36969	349	32	32 32	32 32	32 32	32 32	32 32					31	193307	172899	149735	122256	86744	43225
307	-	28	28	28	28	28	28	28	28	28	27	165973	148450	128562	104970	74225	37113	351	32	32	32	32	32	32	32				31	194625	174078	150756	123092	87039	43519
308	28	28	28	-	28	28	28	28	28	28	28	166616	149026	129060	105377	74513	37257	352	32	32	32	32	32	32	32				32	195283	174667	151266	123508	87333	43667
309	29	28	28	28	28	28	28	28	28	28	28	167260	149602	129559	105785	74801	37400	353	33	32	32	32	32	32		32	32	32	32	195949	175262	151782	123929	87631	43816
310	29	29	28	28	28	28	28	28	28	28	28	167904	150178	130058	106192	75089	37544	354	33	33	32	32	32	32			32	32	32	196615	175858	152297	124350	87929	43964
311	29	29	29	28	28	28	28	28	28	28	28	168548	150754	130556	106599	75377	37688	355	33	33	33	32	32	32	32	32	32	32	32	197280	176453	152813	124771	88226	44113
312	29	29	29	29	28	28	28	28	28	28	28		151329	131055	107006	75665	37832	356	33	33	33	33	32	32					32	197946	177048	153328	125192	88524	44262
313	29	29	29	29	29	28	28	28	28	28	28		151905	131554	107413	75953	37976	357	33	33	33	33	33	32					32	198612	177644	153844	125613	88822	44411
314 315	29 29	29 29	29 29	29 29	29 29	29 29	28 29	28 28	28 28	28 28	28 28	170479 171123	152481 153057	132052 132551	107820 108227	76240 76528	38120 38264	358 359	33	33 33	33 33	33 33	33 33	33 33	32 33				32 32	199277 199943	178239 178834	154359 154875	126034 126455	89119 89417	44560 44709
315	29	29	29	29	29	29	29	20	28	28	28	171766	153633	133050	108635	76816	38408	360	33	33	33	33	33	33	33				32	200608	179430	155391	126435	89715	44857
317	29	29	29	29	29	29	29	29	29	28	28	172410	154208	133548	109042	77104	38552	361	33	33	33	33	33	33				32	32	201274	180025	155906	127297	90012	45006
318	29	29	29	29	29	29	29	29	29	29	28	173054	154784	134047	109449	77392	38696	362	33	33	33	33	33	33	33	33	33	33	32	201940	180620	156422	127718	90310	45155
319	29	29	29	29	29	29	29	29	29	29	29	173698	155360	134546	109856	77680	38840	363	33	33	33	33	33	33	33	33	33	33	33	202605	181216	156937	128139	90608	45304
320	30	29	29	29	29	29	29	29	29	29	29	174350	155943	135051	110268	77971	38986	364	34	33	33	33	33	33	33	33	33	33	33	203257	181799	157442	128551	90899	45450
321		30	29		29	29	29	29	29	29	29		156526		110681	78263	39131	365	34	34	33	33	33						33		182382	157947		91191	45595
322		30	30	29	29	29	29	29	29	29	29		157109		111093	78554	39277	366	34	34	34	33	33					33			182965	158452		91482	45741
323		30 30	30 30		29 30	29 20	29 20	29 20	29 20	29 20	29 20		157692 158275	136565		78846 70137	39423 39569	367	34	34 34	34 34	34 34	33 34						33 33		183548	158957 159462		91774 92065	45887 46033
324 325		30 30	30 30	30 30	30 30	29 30	29 29	29 29	29 29	29 29	29 29		158275	137070 137575		79137 79429	39569 39714	368 369	34	34 34	34 34	34 34	34 34	33 34	33 33				33 33		184131 184714			92065 92357	46033 46178
325		30			30	30	30	29	29	29	29 29		159441	138080		79720	39860	370	34	34	34	34	34	34					33		185297	160472		92648	46324
327		30					30	30	29	29	29		160024	138585		80012	40006	371	34	34	34	34	34	34	34				33		185880	160976		92940	46470
328	30	30	30	30	30	30	30	30			29		160607	139090		80303	40152	372	34	34	34	34	34	34	34	34			33		186463	161481	131849	93231	46616
329				30				30		30			161190		113979	80595	40297	373	34	34	34	34	34	34	34				33		187046	161986		93523	46761
330	30	30	30	30	30	30	30	30	30	30	30	180868	161773	140099	114391	80886	40443	374	34	34	34	34	34	34	34	34	34	34	34	209775	187629	162491		93814	46907
																																	LAPOOSA RIVI		
																														R	OBERT F	. HENRY	TROL MANU LOCK AN ODRUFF	d dam ai	ND
																														SPILL	WAY G	ATE OP	ERATIO	N SCHE	DULE
																		11																	

APPENDIX G PLATE 7-10

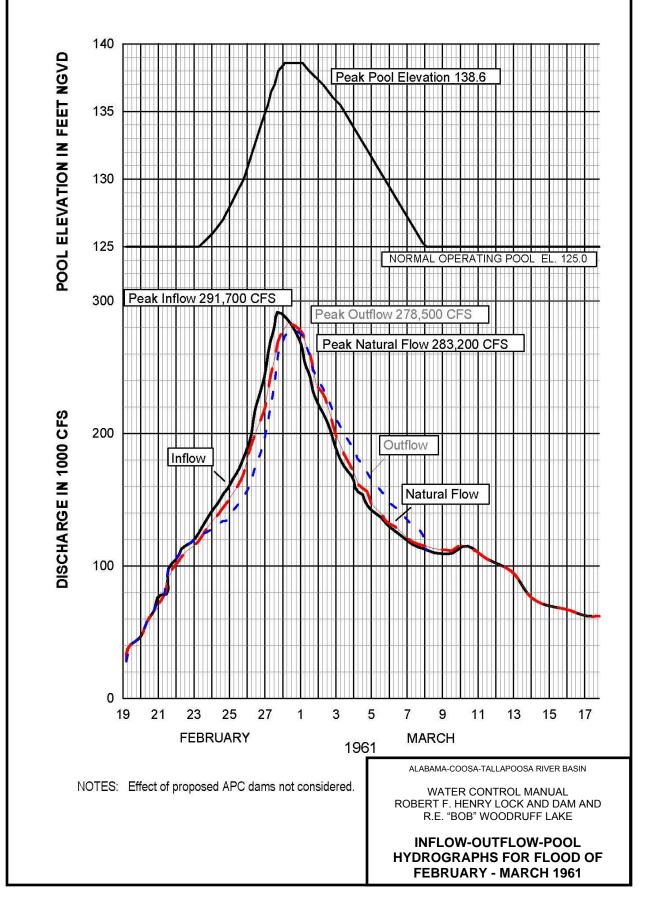
WATER CO	NTROL MAN	
W/ TEI OO		O/ L


U. S. ARMY


CORP	s o	FΕ	NG							<u> </u>																		0.00												. S. ARMY
STEP				G	jΑΙ			NINO E NU				JLE						SP		DISCHAR		-8	STEP			G	AIE			JMBE		ILE				SF		OSS HEA		5
NO.	1	1	10	9		8	7	6		5	4	3	2	1	1	10.	0	8.0	6.0	4.0	2.0	0.5	NO.	11	10	-	8		6	5	4	3	2	1	10.0	8.0	6.0	4.0	2.0	0.5
STEP NO. 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414	1 3 3 3 3 3 3 3 3 3 3 3 3 3	555555555555556666666666666667777777777	34535353533333333333333333333333333333			G B E N A A A A B A B A A A A A A A A A A	ATI 7	E NU RAL 6 34 34 34 34 34 34 35 35 35 35 35 35 35 35 35 35	JME •	35 E 3444444555555555555555566666666666666677777777		3	34 34 34 34 34 34 34 34 34 34 34 34 34 3	$\begin{array}{c} \begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ $	4444444445 555555555556 666666666667 777777	21045 21113 21181 21248 21316 21384 21452 21520 21587 21655 21723 21791 21859 21928 21996 22064 22132 22200 22269 22337 22405 22473 22541 22610 22678 22747 22815 22833 22952 23020 23089 23157 23255 23365 23435 23575	3 1	8.088235888428944990055906629126891875924829308893695943029491195521961319674197350979609857099180997892003992010212023220284420345620406820590320515207127207392083642089614210239210864211489	GR	ROSS HEA 4.0 133102 133531 133531 133960 13489 134818 135247 136534 136963 137823 138254 138686 139117 139548 139979 140410 142567 143000 143433 142567 143000 143433 145596 146028 146461 146893 147335 147345 146028 146461 146893 147345 1479104	2.0 94118 94421 94724 95028 95331 95634 95938 96241 96544 96544 96544 96544 97761 97761 98065 9870 98675 98980 99285 99590 99285 99590 99895 100200 100504 100810 101116 101422 100504 100810 101120 102646 102952 103257 103563 103869 104182 104494 104807 105120 105432		STEP NO. 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 442 443 444 445 446 447 448 449 450 451 452 453 455 456 457 458	39 39 39 39 39 39 39 39 39 39 39 39 39 3	$\begin{array}{c} 38\\ 39\\ 39\\ 39\\ 39\\ 39\\ 39\\ 39\\ 39\\ 39\\ 39$	9 38 38 39 39 39 39 39 39 39 39 39 39 39 40 40 40 40 40 40 40 40 40 40 40 40 40	8 OPEI 38 38 38 39 400 400 400 400 400 400 410 411 411 411 411 411 411 412 422	GAT 7 NING I 38 38 38 39 40 40 41 41 41 41 41 41 41 41 41 41 41 41 <	E NL 6 N RAT 38 38 38 38 39 39 39 39 39 39 39 39 39 39	5 ICHET 3 38 38 38 38 38 38 39 39 39 39 39 39 39 39	R 4 STEP	3 3 38 38 38 38 38 38 38 38 38 38 38 39 40 40 40 41 41 41	2 38 38 38 38 38 38 38 39 39 39 39 39 39 39 39 39 39	41 41 41 41 41 41	240653 241359 242065 242771 243476 244182 244888 245594 246300 247006 247701 248417 249123 249829 250535 251241 251947 252652 253358 254064 254770 255476 256182 255476 256487 257593 258299 259005 259711 260417 261123 26887 257593 258299 259005 259711 260417 261123 263240 263240 263240 263268 264695 265423 266151 266878 267606	8.0 215247 215878 216509 217141 217772 218403 219035 219666 220297 220929 221560 222191 222823 223454 224716 225348 225979 226610 227242 227873 228504 229136 229767 230398 231030 231661 232292 232924 233555 234186 234818 235449 236100 236751 237402 238053 238703	GR6.0186409186956187503188049188596189143189689190236190783191300191876192423192970193517194063194610195157195704196250196797197344198984199531200078200624201171201718202265202811203358203905204469205032205596206160206723207287	OSS HEA 4.0 152202 152649 153542 153988 154434 155327 155774 156666 157113 157559 158006 157113 157559 158006 159345 159791 160238 160684 161131 161577 162023 162470 162916 163363 163363 163363 163595 166041 166488 166948 167408 167868	2.0 107623 107939 108255 108570 108886 109202 109517 109833 110149 110464 110780 111096 111411 11727 112043 112358 112674 112990 113305 113621 113937 114252 114568 114884 115199 115515 115831 116146 116462 116778 117093 117725 118050 118375 118050 118375 118701	
415 416 417 418	38	8 8 8	38 38	38 38 38	8 3 8 3 8 3	38 38	38 38 38	38 38 38	3 3 3	8 8 8	38 38 38	37 38 38	37 37 38	7 3 7 3 3 3	7 7 7	23785 23854 23924	02 92 82	212740 213365 213990	184238 184779 185321 185862	150430 150872 151314	106370	53185 53341 53498 53654	459 460 461 462	42 42 42	42 42 42	42 42 42	42 42 42	2 42 2 42 2 42	42 42 42	42	42 42 42	41 42 42	41 41 42	41 41 41	269062 269789 270517 271245	240656 241307 241958 242609 ALABA V OBERT F R.E.	208414 208978 209542 210105 MA-COOSA-TAI /ATER CON . HENRY "BOB" WO	170169 170630 171090 171550 LAPOOSA RIV TROL MANU LOCK AN DODRUFF	120328 120653 120979 121304 ER BASIN JAL D DAM AI	60164 60327 60489 60652 ND



CORPS OF ENGINEERS


U.S. ARMY

